

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/651912/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Computational spectrometers enabled by nanophotonics and deep learning. Nanophotonics, 2022, 11, 2507-2529.	6.0	33
2	Strong and long-range radiative interaction between resonant transitions. Physical Review Research, 2022, 4, .	3.6	2
3	Compounding a High-Permittivity Thermoplastic Material and Its Applicability in Manufacturing of Microwave Photonic Crystals. Materials, 2022, 15, 2492.	2.9	4
4	Three-Dimensional Printed Planar Polymer Photonic Topological Insulator Waveguides and Their Robustness to Lattice Defects. ACS Photonics, 2022, 9, 1793-1802.	6.6	5
5	Resonance for Analog Recurrent Neural Network. ACS Photonics, 2022, 9, 1647-1654.	6.6	5
6	SAFT: Shotgun advancing front technique for massively parallel mesh generation on graphics processing unit. International Journal for Numerical Methods in Engineering, 2022, 123, 4391-4406.	2.8	2
7	Self-Focused Thermal Emission and Holography Realized by Mesoscopic Thermal Emitters. ACS Photonics, 2021, 8, 497-504.	6.6	18
8	Real-time deep learning design tool for far-field radiation profile. Photonics Research, 2021, 9, B104.	7.0	16
9	Vapor condensation with daytime radiative cooling. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	86
10	Deep neural network for designing near- and far-field properties in plasmonic antennas. Optical Materials Express, 2021, 11, 1907.	3.0	15
11	Inverse Design of Metasurfaces Based on Coupled-Mode Theory and Adjoint Optimization. ACS Photonics, 2021, 8, 2265-2273.	6.6	45
12	Comparison of Different Neural Network Architectures for Plasmonic Inverse Design. ACS Omega, 2021, 6, 23076-23082.	3.5	10
13	Neural network enabled metasurface design for phase manipulation. Optics Express, 2021, 29, 2521.	3.4	39
14	Angle-based wavefront sensing enabled by the near fields of flat optics. Nature Communications, 2021, 12, 6002.	12.8	13
15	Design and Fabrication of Blue LED-Integrated Graphene Electrodes for Neural Stimulation and Signal Recording. ACS Applied Electronic Materials, 2021, 3, 4308-4316.	4.3	8
16	Nonreciprocal Thermal Emitters Using Metasurfaces with Multiple Diffraction Channels. Physical Review Applied, 2021, 16, .	3.8	21
17	Graphene Hybrid Structures for Integrated and Flexible Optoelectronics. Advanced Materials, 2020, 32, e1902039.	21.0	127
18	Microstructure Analysis of Quenched Semi-Solid A356 Aluminum Alloy Slurry by Using Weck's Reagent. Materials Transactions, 2020, 61, 1077-1083.	1.2	4

Li Gao

14.6

50

#	Article	IF	CITATIONS
19	A polydimethylsiloxane-coated metal structure for all-day radiative cooling. Nature Sustainability, 2019, 2, 718-724.	23.7	379
20	Stretchable elastic synaptic transistors for neurologically integrated soft engineering systems. Science Advances, 2019, 5, eaax4961.	10.3	191
21	Nonlinear Nanophotonic Media for Artificial Neural Computing. , 2019, , .		0
22	A Bidirectional Deep Neural Network for Accurate Silicon Color Design. Advanced Materials, 2019, 31, e1905467.	21.0	98
23	Extended Range of Dipole-Dipole Interactions in Periodically Structured Photonic Media. Physical Review Letters, 2019, 123, 173901.	7.8	17
24	Single-shot on-chip spectral sensors based on photonic crystal slabs. Nature Communications, 2019, 10, 1020.	12.8	190
25	Direct Object Recognition Without Line-Of-Sight Using Optical Coherence. , 2019, , .		10
26	Deep Neural Networks: A Bidirectional Deep Neural Network for Accurate Silicon Color Design (Adv.) Tj ETQq0 0 () rg₿Ҭ /Ov 21.0	erlock 10 Tf
27	Deep neural network for plasmonic sensor modeling. Optical Materials Express, 2019, 9, 3857.	3.0	59
28	Compact CMOS spectral sensor for the visible spectrum. Photonics Research, 2019, 7, 961.	7.0	35
29	Training Deep Neural Networks for the Inverse Design of Nanophotonic Structures. ACS Photonics, 2018, 5, 1365-1369.	6.6	657
30	Artificial transpiration: an efficient means of waste-water treatment. National Science Review, 2018, 5, 120-121.	9.5	3
31	Soft and transient magnesium plasmonics for environmental and biomedical sensing. Nano Research, 2018, 11, 4390-4400.	10.4	21
32	Subwavelength angle-sensing photodetectors inspired by directional hearing in small animals. Nature Nanotechnology, 2018, 13, 1143-1147.	31.5	66
33	Efficient and Layerâ€Dependent Exciton Pumping across Atomically Thin Organic–Inorganic Typeâ€I Heterostructures. Advanced Materials, 2018, 30, e1803986.	21.0	79

35	Enhancing the optical cross section of quantum antenna. Physical Review A, 2017, 95, .	2.5	8
36	Spectrally selective solar absorber with sharp and temperature dependent cut-off based on semiconductor nanowire arrays. Applied Physics Letters, 2017, 110, 201108.	3.3	20

Enhanced Performance of Ge Photodiodes <i>via</i> Monolithic Antireflection Texturing and α-Ge Self-Passivation by Inverse Metal-Assisted Chemical Etching. ACS Nano, 2018, 12, 6748-6755.

34

Li Gao

#	Article	IF	CITATIONS
37	A heated junction. Nature Nanotechnology, 2017, 12, 723-724.	31.5	0
38	Treeâ€Inspired Design for Highâ€Efficiency Water Extraction. Advanced Materials, 2017, 29, 1704107.	21.0	494
39	Single-crystalline germanium nanomembrane photodetectors on foreign nanocavities. Science Advances, 2017, 3, e1602783.	10.3	76
40	High-sensitivity silicon ultraviolet p+-i-n avalanche photodiode using ultra-shallow boron gradient doping. Applied Physics Letters, 2017, 111, .	3.3	12
41	Silicon single-photon avalanche diodes with nano-structured light trapping. Nature Communications, 2017, 8, 628.	12.8	69
42	Efficient Midâ€Infrared Light Confinement within Subâ€5â€nm Gaps for Extreme Field Enhancement. Advanced Optical Materials, 2017, 5, 1700223.	7.3	39
43	Electromagnetic scattering laws in Weyl systems. Nature Communications, 2017, 8, 1388.	12.8	34
44	Using active gain to maximize light absorption. Physical Review B, 2017, 96, .	3.2	13
45	Nano-indented Ge surfaces by metal-assisted chemical etching (MacEtch) and its application for optoelectronic devices. , 2017, , .		0
46	Enhancing radiative energy transfer through thermal extraction. Nanophotonics, 2016, 5, 22-30.	6.0	13
47	Resonant cavity germanium photodetector via stacked single-crystalline nanomembranes. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2016, 34, .	1.2	12
48	Angle-selective perfect absorption with two-dimensional materials. Light: Science and Applications, 2016, 5, e16052-e16052.	16.6	94
49	Large-Scale Spinning of Silver Nanofibers as Flexible and Reliable Conductors. Nano Letters, 2016, 16, 5846-5851.	9.1	81
50	Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Science Advances, 2016, 2, e1501227.	10.3	1,025
51	Epitaxial Ultrathin Organic Crystals on Graphene for Highâ€Efficiency Phototransistors. Advanced Materials, 2016, 28, 5200-5205.	21.0	134
52	Producing air-stable monolayers of phosphorene and their defect engineering. Nature Communications, 2016, 7, 10450.	12.8	443
53	Atomically thin optical lenses and gratings. Light: Science and Applications, 2016, 5, e16046-e16046.	16.6	107
54	Extraordinarily Bound Quasi-One-Dimensional Trions in Two-Dimensional Phosphorene Atomic Semiconductors. ACS Nano, 2016, 10, 2046-2053.	14.6	92

Li Gao

#	Article	IF	CITATIONS
55	Extreme Light Management in Mesoporous Wood Cellulose Paper for Optoelectronics. ACS Nano, 2016, 10, 1369-1377.	14.6	161
56	Analog of superradiant emission in thermal emitters. Physical Review B, 2015, 92, .	3.2	23
57	Limitations of nonlinear optical isolators due to dynamic reciprocity. Nature Photonics, 2015, 9, 388-392.	31.4	372
58	Recent advances on non-reciprocal light manipulation from dynamic modulation. , 2015, , .		0
59	Extraordinarily Large Optical Cross Section for Localized Single Nanoresonator. Physical Review Letters, 2015, 115, 023903.	7.8	34
60	Optical tuning of exciton and trion emissions in monolayer phosphorene. Light: Science and Applications, 2015, 4, e312-e312.	16.6	276
61	Optics and Nonlinear Buckling Mechanics in Large-Area, Highly Stretchable Arrays of Plasmonic Nanostructures. ACS Nano, 2015, 9, 5968-5975.	14.6	87
62	Analyses of postbuckling in stretchable arrays of nanostructures for wide-band tunable plasmonics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471, 20150632.	2.1	2
63	Spectral analysis based on compressive sensing in nanophotonic structures. Optics Express, 2014, 22, 25608.	3.4	54
64	Visualization of solute distributions in dendritic and spheroidized Al grains characterized by both color etching method and electron probe microanalysis. Journal of Materials Science, 2014, 49, 1286-1296.	3.7	5
65	Negative Index Materials: Materials Selections and Growth Conditions for Large-Area, Multilayered, Visible Negative Index Metamaterials Formed by Nanotransfer Printing (Advanced Optical Materials) Tj ETQq1 1 (0. 78 \$4314 i	rg B T /Overloc
66	Materials Selections and Growth Conditions for Largeâ€Area, Multilayered, Visible Negative Index Metamaterials Formed by Nanotransfer Printing. Advanced Optical Materials, 2014, 2, 256-261.	7.3	22
67	Adaptive optoelectronic camouflage systems with designs inspired by cephalopod skins. Proceedings of the United States of America, 2014, 111, 12998-13003.	7.1	197
68	Nanoimprinting Techniques for Large-Area Three-Dimensional Negative Index Metamaterials with Operation in the Visible and Telecom Bands. ACS Nano, 2014, 8, 5535-5542.	14.6	51
69	A flexible and transparent ceramic nanobelt network for soft electronics. NPG Asia Materials, 2014, 6, e86-e86.	7.9	50
70	Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin. Nature Communications, 2014, 5, 4938.	12.8	227
71	Analysis of microstructure evolution and precise solid fraction evaluation of A356 aluminum alloy during partial re-melting by a color etching method. Journal of Materials Science, 2012, 47, 6553-6564.	3.7	20