
Jesús Navas-Castillo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6518981/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Establishment of five new genera in the family Geminiviridae: Citlodavirus, Maldovirus, Mulcrilevirus, Opunvirus, and Topilevirus. Archives of Virology, 2022, 167, 695-710.	2.1	43
2	Plant Resistance to Geminiviruses. , 2021, , 554-566.		3
3	Geminiviruses (Geminiviridae). , 2021, , 411-419.		8
4	Foliar application of systemic insecticides disrupts feeding behavior ofÂthe whitefly Bemisia tabaciÂMEAM1 and the transmission of tomato chlorosis virus in potato plants. Journal of Pest Science, 2021, 94, 1265-1276.	3.7	15
5	The Global Dimension of Tomato Yellow Leaf Curl Disease: Current Status and Breeding Perspectives. Microorganisms, 2021, 9, 740.	3.6	31
6	Special Issue "Plant Viruses: From Ecology to Control― Microorganisms, 2021, 9, 1136.	3.6	0
7	Revealing the Complexity of Sweepovirus-Deltasatellite–Plant Host Interactions: Expanded Natural and Experimental Helper Virus Range and Effect Dependence on Virus-Host Combination. Microorganisms, 2021, 9, 1018.	3.6	7
8	Tomato chlorosis virus–encoded p22 suppresses auxin signalling to promote infection via interference with <scp>SKP1â€Cullinâ€Fâ€box^{TIR1}</scp> complex assembly. Plant, Cell and Environment, 2021, 44, 3155-3172.	5.7	18
9	Infectious Clones of Tomato Chlorosis Virus: Toward Increasing Efficiency by Introducing the Hepatitis Delta Virus Ribozyme. Frontiers in Microbiology, 2021, 12, 693457.	3.5	4
10	Taxonomy update for the family Alphasatellitidae: new subfamily, genera, and species. Archives of Virology, 2021, 166, 3503-3511.	2.1	15
11	Insights into Emerging Begomovirus–Deltasatellite Complex Diversity: The First Deltasatellite Infecting Legumes. Biology, 2021, 10, 1125.	2.8	4
12	Transmission of Begomoviruses and Other Whitefly-Borne Viruses: Dependence on the Vector Species. Phytopathology, 2020, 110, 10-17.	2.2	94
13	African Basil (<i>Ocimum gratissimum</i>) Is a Reservoir of Divergent Begomoviruses in Uganda. Plant Disease, 2020, 104, 853-859.	1.4	4
14	Fundamental Aspects of Plant Virusesâ^'An Overview on Focus Issue Articles. Phytopathology, 2020, 110, 6-9.	2.2	3
15	Molecular and Biological Characterization of a New World Mono-/Bipartite Begomovirus/Deltasatellite Complex Infecting Corchorus siliquosus. Frontiers in Microbiology, 2020, 11, 1755.	3.5	28
16	Foliar Spraying of Tomato Plants with Systemic Insecticides: Effects on Feeding Behavior, Mortality and Oviposition of Bemisia tabaci (Hemiptera: Aleyrodidae) and Inoculation Efficiency of Tomato Chlorosis Virus. Insects, 2020, 11, 559.	2.2	16
17	A Novel Strain of Pepper Leafroll Virus Infecting Common Bean and Soybean in Ecuador. Plant Disease, 2019, 103, 167.	1.4	8
18	Tomato chlorosis virus, an emergent plant virus still expanding its geographical and host ranges. Molecular Plant Pathology, 2019, 20, 1307-1320.	4.2	74

#	Article	IF	CITATIONS
19	Insight into the microbial world of Bemisia tabaci cryptic species complex and its relationships with its host. Scientific Reports, 2019, 9, 6568.	3.3	23
20	Recurrent speciation of a tomato yellow leaf curl geminivirus in Portugal by recombination. Scientific Reports, 2019, 9, 1332.	3.3	25
21	A Novel Strain of the Begomovirus Tomato Leaf Curl Sudan Virus Infecting <i>Datura stramonium</i> in Sudan. Plant Disease, 2018, 102, 1863.	1.4	1
22	Evidence for a complex of emergent poleroviruses affecting pepper worldwide. Archives of Virology, 2018, 163, 1171-1178.	2.1	15
23	First Report of <i>Sweet potato leaf curl virus</i> and <i>Sweet potato leaf curl deltasatellite 1</i> Infecting Blue Morning Glory in Portugal. Plant Disease, 2018, 102, 1043.	1.4	5
24	Complete genome sequence of datura leaf curl virus, a novel begomovirus infecting Datura innoxia in Sudan, related to begomoviruses causing tomato yellow leaf curl disease. Archives of Virology, 2018, 163, 273-275.	2.1	4
25	The Westward Journey of Alfalfa Leaf Curl Virus. Viruses, 2018, 10, 542.	3.3	12
26	First Report of Cabbage Leaf Curl Virus Infecting Common Bean, Cowpea, Pigeon Pea, and <i>Mucuna pruriens</i> in Ecuador. Plant Disease, 2018, 102, 2667.	1.4	7
27	Complete genome sequences of two gemycircularviruses associated with non-cultivated plants in Brazil. Archives of Virology, 2018, 163, 3163-3166.	2.1	8
28	Alphasatellitidae: a new family with two subfamilies for the classification of geminivirus- and nanovirus-associated alphasatellites. Archives of Virology, 2018, 163, 2587-2600.	2.1	133
29	Differential Shape of Geminivirus Mutant Spectra Across Cultivated and Wild Hosts With Invariant Viral Consensus Sequences. Frontiers in Plant Science, 2018, 9, 932.	3.6	33
30	First Report of <i>Tomato chlorosis virus</i> Infecting Tomato in Nigeria. Plant Disease, 2018, 102, 257.	1.4	8
31	Capulavirus and Grablovirus: two new genera in the family Geminiviridae. Archives of Virology, 2017, 162, 1819-1831.	2.1	240
32	Complete genome sequences of two novel bipartite begomoviruses infecting common bean in Cuba. Archives of Virology, 2017, 162, 1431-1433.	2.1	4
33	First Report of <i>Datura innoxia</i> as a Natural Host of <i>Watermelon chlorotic stunt virus</i> in Sudan. Plant Disease, 2017, 101, 1334-1334.	1.4	4
34	Complete genome sequence of jacquemontia yellow vein virus, a novel begomovirus infecting Jacquemontia tamnifolia in Venezuela. Archives of Virology, 2017, 162, 2463-2466.	2.1	5
35	A novel East African monopartite begomovirus-betasatellite complex that infects Vernonia amygdalina. Archives of Virology, 2017, 162, 1079-1082.	2.1	2
36	A Novel Strain of the Mastrevirus <i>Chickpea chlorotic dwarf virus</i> Infecting Papaya in Nigeria. Plant Disease, 2017, 101, 1684-1684.	1.4	7

#	Article	IF	CITATIONS
37	Desmodium mottle virus, the first legumovirus (genus Begomovirus) from East Africa. Archives of Virology, 2017, 162, 1799-1803.	2.1	7
38	The Heterologous Expression of the p22 RNA Silencing Suppressor of the Crinivirus Tomato Chlorosis Virus from Tobacco Rattle Virus and Potato Virus X Enhances Disease Severity but Does Not Complement Suppressor-Defective Mutant Viruses. Viruses, 2017, 9, 358.	3.3	8
39	ICTV Virus Taxonomy Profile: Geminiviridae. Journal of General Virology, 2017, 98, 131-133.	2.9	676
40	First Report of <i>Sweet potato leaf curl virus</i> Infecting Sweet Potato in Sudan. Plant Disease, 2017, 101, 849.	1.4	7
41	Stylet penetration activities of the whitefly Bemisia tabaci associated with inoculation of the crinivirus Tomato chlorosis virus. Journal of General Virology, 2017, 98, 1515-1520.	2.9	28
42	Interaction between the New World begomovirus Euphorbia yellow mosaic virus and its associated alphasatellite: effects on infection and transmission by the whitefly Bemisia tabaci. Journal of General Virology, 2017, 98, 1552-1562.	2.9	62
43	SUPRESIÓN VIRAL DEL SILENCIAMIENTO POR RNA EN PLANTAS. Revista Fitotecnia Mexicana, 2017, 40, 181-197.	0.1	1
44	A Novel Strain of Tomato Leaf Curl New Delhi Virus Has Spread to the Mediterranean Basin. Viruses, 2016, 8, 307.	3.3	83
45	The p22 RNA Silencing Suppressor of the Crinivirus Tomato chlorosis virus is Dispensable for Local Viral Replication but Important for Counteracting an Antiviral RDR6-Mediated Response during Systemic Infection. Viruses, 2016, 8, 182.	3.3	7
46	Characterization of Non-coding DNA Satellites Associated with Sweepoviruses (Genus Begomovirus,) Tj ETQq0 0 (Microbiology, 2016, 7, 162.) rgBT /Ov 3.5	verlock 10 Tf 102
47	Infectivity, effects on helper viruses and whitefly transmission of the deltasatellites associated with sweepoviruses (genus Begomovirus, family Geminiviridae). Scientific Reports, 2016, 6, 30204.	3.3	38
48	Deciphering the biology of deltasatellites from the New World: maintenance by New World begomoviruses and whitefly transmission. New Phytologist, 2016, 212, 680-692.	7.3	76
49	Tomato yellow leaf curl virus: No evidence for replication in the insect vector Bemisia tabaci. Scientific Reports, 2016, 6, 30942.	3.3	29
50	Novel begomoviruses recovered from Pavonia sp. in Brazil. Archives of Virology, 2016, 161, 735-739.	2.1	11
51	The p22 RNA silencing suppressor of the crinivirus Tomato chlorosis virus preferentially binds long dsRNAs preventing them from cleavage. Virology, 2016, 488, 129-136.	2.4	26
52	<i>ArabidopsisÂthaliana</i> , an experimental host for tomato yellow leaf curl diseaseâ€associated begomoviruses by agroinoculation and whitefly transmission. Plant Pathology, 2015, 64, 265-271.	2.4	16
53	Revision of Begomovirus taxonomy based on pairwise sequence comparisons. Archives of Virology, 2015, 160, 1593-1619.	2.1	664
54	Complete nucleotide sequences of two new begomoviruses infecting the wild malvaceous plant Melochia sp. in Brazil. Archives of Virology, 2015, 160, 3161-3164.	2.1	14

#	Article	IF	CITATIONS
55	Host range and whitefly transmission efficiency of Tomato severe rugose virus and Tomato golden vein virus in tomato plants. Tropical Plant Pathology, 2015, 40, 405-409.	1.5	18
56	Genetic diversity and silencing suppression activity of the p22 protein of Tomato chlorosis virus isolates from tomato and sweet pepper. Virus Genes, 2015, 51, 283-289.	1.6	5
57	First report of <i>Bemisia tabaci</i> Mediterranean (Q biotype) species in Brazil. Pest Management Science, 2015, 71, 501-504.	3.4	72
58	First Report of <i>Sweet potato leaf curl virus</i> on Blue Morning Glory in Greece. Plant Disease, 2014, 98, 700-700.	1.4	9
59	Tobacco: A New Natural Host of <i>Tomato chlorosis virus</i> in Spain. Plant Disease, 2014, 98, 1162-1162.	1.4	20
60	Characterisation and genetic diversity of pepper leafroll virus, a new bipartite begomovirus infecting pepper, bean and tomato in Peru. Annals of Applied Biology, 2014, 164, 62-72.	2.5	21
61	Revisiting the classification of curtoviruses based on genome-wide pairwise identity. Archives of Virology, 2014, 159, 1873-1882.	2.1	89
62	Complete genome sequence of Jacquemontia yellow mosaic virus, a novel begomovirus from Venezuela related to other New World bipartite begomoviruses infecting Convolvulaceae. Archives of Virology, 2014, 159, 1857-1860.	2.1	9
63	Indigenous American species of the <i>Bemisia tabaci</i> complex are still widespread in the Americas. Pest Management Science, 2014, 70, 1440-1445.	3.4	60
64	Whiteflyâ€ŧransmitted <scp>RNA</scp> viruses that affect intensive vegetable production. Annals of Applied Biology, 2014, 165, 155-171.	2.5	53
65	Infectious cDNA clones of the crinivirus Tomato chlorosis virus are competent for systemic plant infection and whitefly-transmission. Virology, 2014, 464-465, 365-374.	2.4	23
66	Establishment of three new genera in the family Geminiviridae: Becurtovirus, Eragrovirus and Turncurtovirus. Archives of Virology, 2014, 159, 2193-2203.	2.1	218
67	A sensitive method for the quantification of virion-sense and complementary-sense DNA strands of circular single-stranded DNA viruses. Scientific Reports, 2014, 4, 6438.	3.3	30
68	First Detection of <i>Tomato leaf curl New Delhi virus</i> Infecting Zucchini in Spain. Plant Disease, 2014, 98, 857-857.	1.4	113
69	At least two indigenous species of the <i>Bemisia tabaci</i> complex are present in Brazil. Journal of Applied Entomology, 2013, 137, 113-121.	1.8	55
70	A genome-wide pairwise-identity-based proposal for the classification of viruses in the genus Mastrevirus (family Geminiviridae). Archives of Virology, 2013, 158, 1411-1424.	2.1	216
71	Complete genome sequences of two novel begomoviruses infecting common bean in Venezuela. Archives of Virology, 2013, 158, 723-727.	2.1	12
72	Cotton leaf curl Gezira alphasatellite associated with tomato leaf curl Sudan virus approaches the expected upper size limit in the evolution of alphasatellites. Virus Research, 2013, 178, 506-510.	2.2	11

#	Article	IF	CITATIONS
73	Complete genome sequences of two begomoviruses infecting weeds in Venezuela. Archives of Virology, 2013, 158, 277-280.	2.1	18
74	Effects of the Crinivirus Coat Protein–Interacting Plant Protein SAHH on Post-Transcriptional RNA Silencing and Its Suppression. Molecular Plant-Microbe Interactions, 2013, 26, 1004-1015.	2.6	43
75	Fulfilling Koch's postulates confirms the monopartite nature of tomato leaf deformation virus: A begomovirus native to the New World. Virus Research, 2013, 173, 286-293.	2.2	56
76	Molecular characterization reveals Brazilian Tomato chlorosis virus to be closely related to a Greek isolate. Tropical Plant Pathology, 2013, 38, 332-336.	1.5	13
77	First Report of <i>Pepper vein yellows virus</i> Infecting Sweet Pepper in Spain. Plant Disease, 2013, 97, 1261-1261.	1.4	21
78	Short communication. First report of Eggplant mottled dwarf virus in China rose in southern Spain. Spanish Journal of Agricultural Research, 2013, 11, 204.	0.6	5
79	First Report of China Rose (<i>Hibiscus rosa-sinensis</i>) as a Host of <i>Alfalfa mosaic virus</i> in Spain. Plant Disease, 2012, 96, 462-462.	1.4	11
80	Complete Genome Sequence of a Double-Stranded RNA Virus from Avocado. Journal of Virology, 2012, 86, 1282-1283.	3.4	28
81	Potato, an experimental and natural host of the crinivirus Tomato chlorosis virus. European Journal of Plant Pathology, 2012, 134, 81-86.	1.7	33
82	Genetic diversity and recombination analysis of sweepoviruses from Brazil. Virology Journal, 2012, 9, 241.	3.4	38
83	Diverse population of a new bipartite begomovirus infecting tomato crops in Uruguay. Archives of Virology, 2012, 157, 1137-1142.	2.1	12
84	<i>Tomato chlorosis virus</i> in pepper: prevalence in commercial crops in southeastern Spain and symptomatology under experimental conditions. Plant Pathology, 2012, 61, 994-1001.	2.4	46
85	A novel class of DNA satellites associated with New World begomoviruses. Virology, 2012, 426, 1-6.	2.4	81
86	Begomoviruses infecting weeds in Cuba: increased host range and a novel virus infecting Sida rhombifolia. Archives of Virology, 2012, 157, 141-146.	2.1	30
87	Emerging Virus Diseases Transmitted by Whiteflies. Annual Review of Phytopathology, 2011, 49, 219-248.	7.8	755
88	Only the B biotype of Bemisia tabaci is present on vegetables in São Paulo State, Brazil. Scientia Agricola, 2011, 68, 120-123.	1.2	15
89	Sweepoviruses Cause Disease in Sweet Potato and Related Ipomoea spp.: Fulfilling Koch's Postulates for a Divergent Group in the Genus Begomovirus. PLoS ONE, 2011, 6, e27329.	2.5	22
90	Tomato leaf deformation virus, a novel begomovirus associated with a severe disease of tomato in Peru. European Journal of Plant Pathology, 2011, 129, 1-7.	1.7	29

#	Article	IF	CITATIONS
91	Complete nucleotide sequence of a Spanish isolate of alfalfa mosaic virus: evidence for additional genetic variability. Archives of Virology, 2011, 156, 1049-1052.	2.1	19
92	A novel monopartite begomovirus infecting sweet potato in Brazil. Archives of Virology, 2011, 156, 1291-1294.	2.1	24
93	First Report of Tomato chlorosis virus Infecting Tomato in Sudan. Plant Disease, 2011, 95, 1592-1592.	1.4	26
94	Resistance to Tomato chlorosis virus in Wild Tomato Species that Impair Virus Accumulation and Disease Symptom Expression. Phytopathology, 2010, 100, 582-592.	2.2	31
95	Complete nucleotide sequence of Sida golden mosaic Florida virus and phylogenetic relationships with other begomoviruses infecting malvaceous weeds in the Caribbean. Archives of Virology, 2010, 155, 1535-1537.	2.1	19
96	Two novel begomoviruses belonging to different lineages infecting Rhynchosia minima. Archives of Virology, 2010, 155, 2053-2058.	2.1	18
97	Tomato yellow leaf curl viruses: <i>ménage à trois</i> between the virus complex, the plant and the whitefly vector. Molecular Plant Pathology, 2010, 11, 441-450.	4.2	146
98	Ocorrência e variabilidade genética do Tomato severe rugose virus em tomateiro e pimentão no Estado de São Paulo. Summa Phytopathologica, 2010, 36, 222-227.	0.1	9
99	Populations of Genomic RNAs Devoted to the Replication or Spread of a Bipartite Plant Virus Differ in Genetic Structure. Journal of Virology, 2009, 83, 12973-12983.	3.4	22
100	Novel begomovirus species of recombinant nature in sweet potato (Ipomoea batatas) and Ipomoea indica: taxonomic and phylogenetic implications. Journal of General Virology, 2009, 90, 2550-2562.	2.9	67
101	The complete nucleotide sequence of the RNA2 of the crinivirus tomato infectious chlorosis virus: isolates from North America and Europe are essentially identical. Archives of Virology, 2009, 154, 683-687.	2.1	11
102	Six comments on the ten reasons for the demotion of viruses. Nature Reviews Microbiology, 2009, 7, 615-615.	28.6	13
103	Resistance-driven selection of begomoviruses associated with the tomato yellow leaf curl disease. Virus Research, 2009, 146, 66-72.	2.2	58
104	Tomato Yellow Leaf Curl Disease Epidemics. , 2009, , 259-282.		7
105	Multiple suppressors of RNA silencing encoded by both genomic RNAs of the crinivirus, Tomato chlorosis virus. Virology, 2008, 379, 168-174.	2.4	103
106	Tomato torrado virus is Transmitted by <i>Bemisia tabaci</i> and Infects Pepper and Eggplant in Addition to Tomato. Plant Disease, 2008, 92, 1139-1139.	1.4	54
107	Rapid evolution of the population of begomoviruses associated with the tomato yellow leaf curl disease after invasion of a new ecological niche: a review. Spanish Journal of Agricultural Research, 2008, 6, 147.	0.6	39
108	Recombination in the TYLCV Complex: a Mechanism to Increase Genetic Diversity. Implications for Plant Resistance Development. , 2007, , 119-138.		31

#	Article	IF	CITATIONS
109	Founder effect, plant host, and recombination shape the emergent population of begomoviruses that cause the tomato yellow leaf curl disease in the Mediterranean basin. Virology, 2007, 359, 302-312.	2.4	127
110	Frequent occurrence of recombinants in mixed infections of tomato yellow leaf curl disease-associated begomoviruses. Virology, 2007, 365, 210-219.	2.4	98
111	Physalis ixocarpa and P. peruviana, new natural hosts of Tomato chlorosis virus. European Journal of Plant Pathology, 2007, 118, 193-196.	1.7	33
112	Complete sequence of the RNA1 of a European isolate of tomato chlorosis virus. Archives of Virology, 2007, 152, 839-841.	2.1	30
113	First Report of <i>Sweet potato virus G</i> and Sweet potato virus 2 Infecting Sweet Potato in Spain. Plant Disease, 2007, 91, 1687-1687.	1.4	15
114	Complete nucleotide sequence of the RNA2 of the crinivirus tomato chlorosis virus. Archives of Virology, 2006, 151, 581-587.	2.1	48
115	Begomovirus genetic diversity in the native plant reservoir Solanum nigrum: evidence for the presence of a new virus species of recombinant nature. Virology, 2006, 350, 433-442.	2.4	131
116	Busca por Tomato yellow leaf curl virus e Tomato yellow leaf curl Sardinia virus em tomateiros. Horticultura Brasileira, 2004, 22, 799-800.	0.5	5
117	First Report of Sweet Pepper (Capsicum annuum) as a Natural Host Plant for Tomato chlorosis virus. Plant Disease, 2004, 88, 224-224.	1.4	42
118	First Report of Sweet potato chlorotic stunt virus and Sweet potato feathery mottle virus Infecting Sweet Potato in Spain. Plant Disease, 2004, 88, 428-428.	1.4	20
119	High Genetic Stability of the Begomovirus Tomato yellow leaf curl Sardinia virus in Southern Spain Over an 8-Year Period. Phytopathology, 2002, 92, 842-849.	2.2	68
120	A Natural Recombinant between the Geminiviruses Tomato yellow leaf curl Sardinia virus and Tomato yellow leaf curl virus Exhibits a Novel Pathogenic Phenotype and Is Becoming Prevalent in Spanish Populations. Virology, 2002, 303, 317-326.	2.4	225
121	Polymorphism of the 5′ terminal region of Citrus tristeza virus (CTV) RNA: Incidence of three sequence types in isolates of different origin and pathogenicity. Archives of Virology, 2001, 146, 27-40.	2.1	50
122	Title is missing!. Molecular Breeding, 2001, 8, 85-94.	2.1	18
123	Evidence of a Naturally Occurring Recombinant Between Tomato yellow leaf curl virus and Tomato yellow leaf curl Sardinia virus in Spain. Plant Disease, 2001, 85, 1289-1289.	1.4	8
124	Severe Yellowing Outbreaks in Tomato in Spain Associated with Infections of Tomato chlorosis virus. Plant Disease, 2000, 84, 835-837.	1.4	105
125	Typing of Tomato Yellow Leaf Curl Viruses in Europe. European Journal of Plant Pathology, 2000, 106, 179-186.	1.7	105
126	Title is missing!. European Journal of Plant Pathology, 2000, 106, 391-394.	1.7	36

#	Article	IF	CITATIONS
127	The 23-kDa Protein Coded by the 3′-Terminal Gene of Citrus Tristeza Virus Is an RNA-Binding Protein. Virology, 2000, 269, 462-470.	2.4	77
128	Tomato yellow leaf curl virus, an emerging virus complex causing epidemics worldwide. Virus Research, 2000, 71, 123-134.	2.2	401
129	The p20 Gene Product of Citrus Tristeza Virus Accumulates in the Amorphous Inclusion Bodies. Virology, 2000, 274, 246-254.	2.4	60
130	Spread of Tomato yellow leaf curl virus Sar from the Mediterranean Basin: Presence in the Canary Islands and Morocco. Plant Disease, 2000, 84, 490-490.	1.4	23
131	Natural recombination between Tomato yellow leaf curl virus-Is and Tomato leaf curl virus. Journal of General Virology, 2000, 81, 2797-2801.	2.9	97
132	An engineered closterovirus RNA replicon and analysis of heterologous terminal sequences for replication. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 7433-7438.	7.1	132
133	Displacement of Tomato Yellow Leaf Curl Virus (TYLCV)-Sr by TYLCV-Is in Tomato Epidemics in Spain. Phytopathology, 1999, 89, 1038-1043.	2.2	153
134	Tomato Yellow Leaf Curl Virus-Is Causes a Novel Disease of Common Bean and Severe Epidemics in Tomato in Spain. Plant Disease, 1999, 83, 29-32.	1.4	141
135	The complete genome sequence of the major component of a mild citrus tristeza virus isolate Journal of General Virology, 1999, 80, 811-816.	2.9	106
136	New defective RNAs from citrus tristeza virus: evidence for a replicase-driven template switching mechanism in their generation Journal of General Virology, 1999, 80, 817-821.	2.9	52
137	Improvement of the print-capture polymerase chain reaction procedure for efficient amplification of DNA virus genomes from plants and insect vectors. Journal of Virological Methods, 1998, 75, 195-198.	2.1	15
138	Molecular Variability of the 5′- and 3′-Terminal Regions of Citrus Tristeza Virus RNA. Phytopathology, 1998, 88, 685-691.	2.2	101
139	Kinetics of Accumulation of Citrus Tristeza Virus RNAs. Virology, 1997, 228, 92-97.	2.4	92
140	First Report of Tomato Yellow Leaf Curl Virus-Is in Spain: Coexistence of Two Different Geminiviruses in the Same Epidemic Outbreak. Plant Disease, 1997, 81, 1461-1461.	1.4	51
141	Filamentous flexous particles and serologically related proteins of variable size associated with citrus psorosis and ringspot diseases. European Journal of Plant Pathology, 1995, 101, 343-348.	1.7	13
142	Citrus psorosis, ringspot, cristacortis and concave gum pathogens are maintained in callus culture. Plant Cell, Tissue and Organ Culture, 1995, 40, 133-137.	2.3	12
143	Partial purification of a virus associated with a Spanish isolate of citrus ringspot. Plant Pathology, 1993, 42, 339-346.	2.4	16
144	Biological diversity of citrus ringspot isolates in Spain. Plant Pathology, 1993, 42, 347-357.	2.4	19

#	Article	IF	CITATIONS
145	Evidence for a phosphoenolpyruvate dependent sugar-phosphotransferase system in the mollicute Acholeplasma florum. Biochimie, 1993, 75, 675-679.	2.6	6
146	16S rDNA sequence analysis ofAcholeplasma seiffertii, a mollicute from plant surfaces, and its transfer to Mesoplasma, a new genus in the spiroplasma phylogenetic group. Nucleic Acids Research, 1993, 21, 2249-2249.	14.5	1
147	G banding in two species of grasshopper and its relationship to C, N, and fluorescence banding techniques. Genome, 1991, 34, 638-643.	2.0	73
148	Detection of double-stranded RNA by ELISA and dot immunobinding assay using an antiserum to synthetic polynucleotides. Journal of Virological Methods, 1991, 33, 1-11.	2.1	16
149	Paracentric inversion in the grasshopper Oedipoda charpentieri. Heredity, 1987, 59, 441-444.	2.6	0
150	Chiasma redistribution in presence of supernumerary chromosome segments in grasshoppers: dependence on the size of the extra segment. Heredity, 1987, 58, 409-412.	2.6	16
151	Effects of supernumerary chromosome segments on the activity of nucleolar organiser regions in the grasshopper Chorthippus binotatus. Chromosoma, 1986, 93, 375-380.	2.2	28
152	Heterochromatin variants in Baetica ustulata (Orthoptera: Tettigoniidae) analysed by C and G banding. Heredity, 1986, 56, 161-165.	2.6	7
153	Extra nucleolar activity associated with presence of a supernumerary chromosome segment in the grasshopper Oedipoda fuscocincta. Heredity, 1986, 56, 237-241.	2.6	9
154	Chiasma redistribution in bivalents carrying supernumerary chromosome segments in grasshoppers. Heredity, 1985, 55, 245-248.	2.6	23
155	C-Heterochromatin content of supernumerary chromosome segments of grasshoppers: Detection of an euchromatic extra segment. Heredity, 1984, 53, 167-175.	2.6	66
156	Differential reaction of sweet pepper to infection with the crinivirus tomato chlorosis virus probably depends on the viral variant. Plant Pathology, 0, , .	2.4	0