L Brito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6517990/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of Escherichia coli from Water and Food Sold on the Streets of Maputo: Molecular Typing, Virulence Genes, and Antibiotic Resistance. Applied Microbiology, 2022, 2, 133-147.	1.6	9
2	A high level of antibiotic resistance in <i>Klebsiella</i> and <i>Aeromonas</i> isolates from street water sold in Mozambique, associated with the prevalence of extended-spectrum and AmpC ß-lactamases. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2022, 57, 561-567.	1.5	6
3	Enterotoxin- and Antibiotic-Resistance-Encoding Genes Are Present in Both Coagulase-Positive and Coagulase-Negative Foodborne Staphylococcus Strains. Applied Microbiology, 2022, 2, 367-380.	1.6	6

 $_4$ Storage Stability and In Vitro Bioaccessibility of Microencapsulated Tomato (Solanum Lycopersicum) Tj ETQq0 0 0 $_{9.5}^{
m gBT}$ /Overlock 10 Tf

5	Microbiological assessment of street foods at the point of sale in Maputo (Mozambique). Food Quality and Safety, 2021, 5, .	1.8	21
6	Animal Slurry Sanitization through pH Adjustment: Process Optimization and Impact on Slurry Characteristics. Agronomy, 2021, 11, 517.	3.0	13
7	Pineapple (Ananas comosus L.) By-Products Valorization: Novel Bio Ingredients for Functional Foods. Molecules, 2021, 26, 3216.	3.8	5
8	High Fecal Contamination and High Levels of Antibiotic-Resistant Enterobacteriaceae in Water Consumed in the City of Maputo, Mozambique. Biology, 2021, 10, 558.	2.8	18
9	Lactobacillus plantarum in Dual-Species Biofilms With Listeria monocytogenes Enhanced the Anti-Listeria Activity of a Commercial Disinfectant Based on Hydrogen Peroxide and Peracetic Acid. Frontiers in Microbiology, 2021, 12, 631627.	3.5	4
10	A pig slurry feast/famine feeding regime strategy to improve mesophilic anaerobic digestion efficiency and digestate hygienisation. Waste Management and Research, 2020, 39, 0734242X2097279.	3.9	6
11	Strain and Growth Conditions may Regulate Resistance of Listeria monocytogenes Biofilms to Benzalkonium Chloride. Applied Sciences (Switzerland), 2020, 10, 988.	2.5	5
12	The benzalkonium chloride resistant or sensitive phenotype of Listeria monocytogenes planktonic cells did not dictate the susceptibility of its biofilm counterparts. Food Research International, 2019, 123, 373-382.	6.2	20
13	Listeria innocua and Listeria monocytogenes strains from dairy plants behave similarly in biofilm sanitizer testing. LWT - Food Science and Technology, 2018, 92, 477-483.	5.2	17
14	Listeria monocytogenes cells under nutrient deprivation showed reduced ability to infect the human intestinal cell line HT-29. Journal of Medical Microbiology, 2018, 67, 110-117.	1.8	0
15	Effect of thermal and high hydrostatic pressure treatments on mango bars shelf-life under refrigeration. Journal of Food Engineering, 2017, 212, 113-120.	5.2	9
16	Biofilm Formation and Disinfectant Susceptibility of Persistent and Nonpersistent <i>Listeria monocytogenes</i> Isolates from Gorgonzola Cheese Processing Plants. Foodborne Pathogens and Disease, 2016, 13, 602-609.	1.8	28
17	Lactobacillus plantarum LB95 impairs the virulence potential of Gram-positive and Gram-negative food-borne pathogens in HT-29 and Vero cell cultures. Journal of Medical Microbiology, 2016, 65, 28-35.	1.8	15
18	Differences in the Expression of Cold Stress–Related Genes and in the Swarming Motility Among Persistent and Sporadic Strains of <i>Listeria monocytogenes</i> . Foodborne Pathogens and Disease, 2015, 12, 576-584.	1.8	52

L Brito

#	Article	IF	CITATIONS
19	Bisphenol A Disrupts Transcription and Decreases Viability in Aging Vascular Endothelial Cells. International Journal of Molecular Sciences, 2014, 15, 15791-15805.	4.1	23
20	ls the Exoproteome Important for Bacterial Pathogenesis? Lessons Learned from Interstrain Exoprotein Diversity inListeria monocytogenesGrown at Different Temperatures. OMICS A Journal of Integrative Biology, 2014, 18, 553-569.	2.0	10
21	The Tat Pathway Is Prevalent in <i>Listeria monocytogenes</i> Lineage II and Is Not Required for Infection and Spread in Host Cells. Journal of Molecular Microbiology and Biotechnology, 2013, 23, 209-218.	1.0	3
22	Comparison of Listeria monocytogenes Exoproteomes from Biofilm and Planktonic State: Lmo2504, a Protein Associated with Biofilms. Applied and Environmental Microbiology, 2013, 79, 6075-6082.	3.1	26
23	Comparative Analysis of the Exoproteomes ofListeria monocytogenesStrains Grown at Low Temperatures. Foodborne Pathogens and Disease, 2013, 10, 428-434.	1.8	22
24	Evaluation of Methods To Assess the Biofilm-Forming Ability of Listeria monocytogenes. Journal of Food Protection, 2012, 75, 1411-1417.	1.7	34
25	The Environmental Pollutant Bisphenol A Interferes with Nucleolar Structure. , 2012, , .		0
26	Chemical composition and antibacterial activity of the essential oils from the medicinal plant Mentha cervina L. grown in Portugal. Medicinal Chemistry Research, 2012, 21, 3485-3490.	2.4	13
27	ANTIBIOTIC RESISTANCE IN ENTEROBACTERIACEAE ISOLATED FROM PORTUGUESE DELI MEATS. Journal of Food Safety, 2011, 31, 1-20.	2.3	11
28	Biofilms ofâ€, <i>Listeria monocytogenes</i> â€,Produced at 12 ° C either in Pure Culture or in Co ulture withâ€, <i>Pseudomonas aeruginosa</i> â€,Showed Reduced Susceptibility to Sanitizers. Journal of Food Science, 2011, 76, M143-8.	3.1	38
29	In vitro transference and molecular characterization of bla TEM genes in bacteria isolated from Portuguese ready-to-eat foods. World Journal of Microbiology and Biotechnology, 2011, 27, 1775-1785.	3.6	6
30	Susceptibility of wine spoilage yeasts and bacteria in the planktonic state and in biofilms to disinfectants. Annals of Microbiology, 2010, 60, 549-556.	2.6	27
31	A secretome-based methodology may provide a better characterization of the virulence of Listeria monocytogenes: Preliminary results. Talanta, 2010, 83, 457-463.	5.5	18
32	Antibacterial and antifungal activity of Mentha cervina essential oils and their main components. Planta Medica, 2010, 76, .	1.3	0
33	Resistance to β-lactams in Bacteria Isolated from Different Types of Portuguese Cheese. International Journal of Molecular Sciences, 2009, 10, 1538-1551.	4.1	28
34	Susceptibility of Listeria monocytogenes from traditional cheese-dairies to in-use sanitizers. Food Control, 2009, 20, 585-589.	5.5	25
35	Pulsed-field gel electrophoresis (PFGE) analysis of Listeria monocytogenes isolates from different sources and geographical origins and representative of the twelve serovars. Systematic and Applied Microbiology, 2008, 31, 387-392.	2.8	30
36	Virulence of Listeria monocytogenes isolated from the cheese dairy environment, other foods and clinical cases. Journal of Medical Microbiology, 2008, 57, 411-415.	1.8	29

L Brito

#	Article	IF	CITATIONS
37	Evolution of Listeria monocytogenes populations during the ripening of naturally contaminated raw ewe's milk cheese. Food Control, 2007, 18, 1258-1262.	5.5	10
38	The effects of salt and pH stress on the growth rates of persistent strains of Listeria monocytogenes collected from specific ecological niches. Food Research International, 2006, 39, 816-822.	6.2	23
39	Comparative characterization of Listeria monocytogenes isolated from Portuguese farmhouse ewe's cheese and from humans. International Journal of Food Microbiology, 2006, 106, 111-121.	4.7	51
40	PCR-fingerprinting and RAPD approaches for tracing the source of yeast contamination in a carbonated orange juice production chain. Journal of Applied Microbiology, 2005, 98, 1107-1114.	3.1	14
41	Genetic Characterization of Listeria monocytogenes Food Isolates and Pathogenic Potential within Serovars 1/2a and 1/2b. Systematic and Applied Microbiology, 2004, 27, 454-461.	2.8	13
42	Presence and Analysis of Large Plasmids in Oenococcus oeni. Plasmid, 1999, 41, 260-267.	1.4	18
43	Physical map of the genome of Oenococcus oeni PSU-1 and localization of genetic markers. Microbiology (United Kingdom), 1998, 144, 1145-1156.	1.8	34
44	Nucleotide Sequence Analysis of pOg32, a Cryptic Plasmid fromLeuconostoc oenos. Plasmid, 1996, 36, 49-54.	1.4	25
45	Bacteriophages induced by mitomycin C treatment of Leuconostoc oenos strains from Portuguese wines. Letters in Applied Microbiology, 1993, 16, 207-209.	2.2	26
46	Roles of Mn2+, Mg2+ and Ca2+ on alginate biosynthesis by Pseudomonas aeruginosa. Enzyme and Microbial Technology, 1990, 12, 794-799.	3.2	31