John D Boyce

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6517886/publications.pdf Version: 2024-02-01

IOHN D ROVCE

#	Article	IF	CITATIONS
1	The Role and Targets of the RNA-Binding Protein ProQ in the Gram-Negative Bacterial Pathogen Pasteurella multocida. Journal of Bacteriology, 2022, 204, e0059221.	2.2	4
2	Genome-Wide Investigation of Pasteurella multocida Identifies the Stringent Response as a Negative Regulator of Hyaluronic Acid Capsule Production. Microbiology Spectrum, 2022, 10, e0019522.	3.0	4
3	The capsular polysaccharides of Pasteurella multocida serotypes B and E: Structural, genetic and serological comparisons. Glycobiology, 2021, 31, 307-314.	2.5	5
4	Combating Multidrugâ€Resistant Bacteria by Integrating a Novel Target Site Penetration and Receptor Binding Assay Platform Into Translational Modeling. Clinical Pharmacology and Therapeutics, 2021, 109, 1000-1020.	4.7	10
5	Synergy of the Polymyxin-Chloramphenicol Combination against New Delhi Metallo-β-Lactamase-Producing <i>Klebsiella pneumoniae</i> Is Predominately Driven by Chloramphenicol. ACS Infectious Diseases, 2021, 7, 1584-1595.	3.8	14
6	Pharmacodynamics of ceftazidime plus tobramycin combination dosage regimens against hypermutable Pseudomonas aeruginosa isolates at simulated epithelial lining fluid concentrations in a dynamic in vitro infection model. Journal of Global Antimicrobial Resistance, 2021, 26, 55-63.	2.2	7
7	Phosphorylation of Extracellular Proteins in Acinetobacter baumannii in Sessile Mode of Growth. Frontiers in Microbiology, 2021, 12, 738780.	3.5	3
8	Disruption of the Burkholderia pseudomallei two-component signal transduction system BbeR-BbeS leads to increased extracellular DNA secretion and altered biofilm formation. Veterinary Microbiology, 2020, 242, 108603.	1.9	2
9	Transcriptomic responses of a New Delhi metallo-β-lactamase-producing Klebsiella pneumoniae isolate to the combination of polymyxin B and chloramphenicol. International Journal of Antimicrobial Agents, 2020, 56, 106061.	2.5	10
10	Polymyxins Bind to the Cell Surface of Unculturable <i>Acinetobacter baumannii</i> and Cause Unique Dependent Resistance. Advanced Science, 2020, 7, 2000704.	11.2	31
11	Novel Cassette Assay To Quantify the Outer Membrane Permeability of Five β-Lactams Simultaneously in Carbapenem-Resistant <i>Klebsiella pneumoniae</i> and <i>Enterobacter cloacae</i> . MBio, 2020, 11, .	4.1	17
12	Pan-transcriptomic analysis identified common differentially expressed genes of <i>Acinetobacter baumannii</i> in response to polymyxin treatments. Molecular Omics, 2020, 16, 327-338.	2.8	7
13	Mechanisms of Polymyxin Resistance. Advances in Experimental Medicine and Biology, 2019, 1145, 55-71.	1.6	118
14	Systematic Identification and Analysis of Acinetobacter baumannii Type VI Secretion System Effector and Immunity Components. Frontiers in Microbiology, 2019, 10, 2440.	3.5	32
15	Comparable Efficacy and Better Safety of Double β-Lactam Combination Therapy versus β‑Lactam plus Aminoglycoside in Gram-Negative Bacteria in Randomized, Controlled Trials. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	24
16	Characterization of Hypermutator Pseudomonas aeruginosa Isolates from Patients with Cystic Fibrosis in Australia. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	30
17	Determination of the small RNA GcvB regulon in the Gram-negative bacterial pathogen <i>Pasteurella multocida</i> and identification of the GcvB seed binding region. Rna, 2018, 24, 704-720.	3.5	26
18	Optimization of a Meropenem-Tobramycin Combination Dosage Regimen against Hypermutable and Nonhypermutable Pseudomonas aeruginosa via Mechanism-Based Modeling and the Hollow-Fiber Infection Model. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	31

Јони D Воусе

#	Article	IF	CITATIONS
19	Combating Carbapenem-Resistant Acinetobacter baumannii by an Optimized Imipenem-plus-Tobramycin Dosage Regimen: Prospective Validation via Hollow-Fiber Infection and Mathematical Modeling. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	10
20	Emergence of High-Level Colistin Resistance in an Acinetobacter baumannii Clinical Isolate Mediated by Inactivation of the Global Regulator H-NS. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	36
21	Identification of Novel Acinetobacter baumannii Type VI Secretion System Antibacterial Effector and Immunity Pairs. Infection and Immunity, 2018, 86, .	2.2	88
22	Meropenem Combined with Ciprofloxacin Combats Hypermutable Pseudomonas aeruginosa from Respiratory Infections of Cystic Fibrosis Patients. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	26
23	What's the risk? Identifying potential human pathogens within grey-headed flying foxes faeces. PLoS ONE, 2018, 13, e0191301.	2.5	16
24	Global Gene Expression Profile of Acinetobacter baumannii During Bacteremia. Journal of Infectious Diseases, 2017, 215, S52-S57.	4.0	38
25	Characterization of Two Novel Lipopolysaccharide Phosphoethanolamine Transferases in Pasteurella multocida and Their Role in Resistance to Cathelicidin-2. Infection and Immunity, 2017, 85, .	2.2	14
26	The Myriad Properties of Pasteurella multocida Lipopolysaccharide. Toxins, 2017, 9, 254.	3.4	48
27	Global metabolic analyses identify key differences in metabolite levels between polymyxin-susceptible and polymyxin-resistant Acinetobacter baumannii. Scientific Reports, 2016, 6, 22287.	3.3	49
28	Polymyxin Resistance in Acinetobacter baumannii: Genetic Mutations and Transcriptomic Changes in Response to Clinically Relevant Dosage Regimens. Scientific Reports, 2016, 6, 26233.	3.3	82
29	RNA-seq analysis of virR and revR mutants of Clostridium perfringens. BMC Genomics, 2016, 17, 391.	2.8	9
30	Perturbation of the two-component signal transduction system, BprRS, results in attenuated virulence and motility defects in Burkholderia pseudomallei. BMC Genomics, 2016, 17, 331.	2.8	19
31	The RNA-Binding Chaperone Hfq Is an Important Global Regulator of Gene Expression in Pasteurella multocida and Plays a Crucial Role in Production of a Number of Virulence Factors, Including Hyaluronic Acid Capsule. Infection and Immunity, 2016, 84, 1361-1370.	2.2	40
32	Protective efficacy afforded by live Pasteurella multocida vaccines in chickens is independent of lipopolysaccharide outer core structure. Vaccine, 2016, 34, 1696-1703.	3.8	25
33	Comparative Genomic Analysis of Asian Haemorrhagic Septicaemia-Associated Strains of Pasteurella multocida Identifies More than 90 Haemorrhagic Septicaemia-Specific Genes. PLoS ONE, 2015, 10, e0130296.	2.5	45
34	The Burkholderia pseudomallei Proteins BapA and BapC Are Secreted TTSS3 Effectors and BapB Levels Modulate Expression of BopE. PLoS ONE, 2015, 10, e0143916.	2.5	5
35	Synergistic killing of NDM-producing MDR <i>Klebsiella pneumoniae</i> by two â€~old' antibiotics—polymyxin B and chloramphenicol. Journal of Antimicrobial Chemotherapy, 2015, 70, 2589-2597	3.0	73
36	Novel Approach To Optimize Synergistic Carbapenem-Aminoglycoside Combinations against Carbapenem-Resistant Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 2015, 59, 2286-2298.	3.2	52

JOHN D BOYCE

#	Article	IF	CITATIONS
37	The transcriptomic response of <i>Acinetobacter baumannii</i> to colistin and doripenem alone and in combination in an <i>in vitro</i> pharmacokinetics/pharmacodynamics model. Journal of Antimicrobial Chemotherapy, 2015, 70, 1303-1313.	3.0	85
38	Burkholderia pseudomallei Type III Secretion System Cluster 3 ATPase BsaS, a Chemotherapeutic Target for Small-Molecule ATPase Inhibitors. Infection and Immunity, 2015, 83, 1276-1285.	2.2	16
39	Development of a Rapid Multiplex PCR Assay To Genotype Pasteurella multocida Strains by Use of the Lipopolysaccharide Outer Core Biosynthesis Locus. Journal of Clinical Microbiology, 2015, 53, 477-485.	3.9	89
40	Characterization of the lipopolysaccharide produced by Pasteurella multocida serovars 6, 7 and 16: Identification of lipopolysaccharide genotypes L4 and L8. Glycobiology, 2015, 25, 294-302.	2.5	8
41	Biological Cost of Different Mechanisms of Colistin Resistance and Their Impact on Virulence in Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 2014, 58, 518-526.	3.2	218
42	Structural analysis of lipopolysaccharide produced by Heddleston serovars 10, 11, 12 and 15 and the identification of a new Pasteurella multocida lipopolysaccharide outer core biosynthesis locus, L6. Glycobiology, 2014, 24, 649-659.	2.5	12
43	Genomic Evidence for a Globally Distributed, Bimodal Population in the Ovine Footrot Pathogen Dichelobacter nodosus. MBio, 2014, 5, e01821-14.	4.1	36
44	In silico prediction of Gallibacterium anatis pan-immunogens. Veterinary Research, 2014, 45, 80.	3.0	11
45	Structure and biosynthetic locus of the lipopolysaccharide outer core produced by Pasteurella multocida serovars 8 and 13 and the identification of a novel phospho-glycero moiety. Glycobiology, 2013, 23, 286-294.	2.5	13
46	Pasteurella multocida Heddleston Serovar 3 and 4 Strains Share a Common Lipopolysaccharide Biosynthesis Locus but Display both Inter- and Intrastrain Lipopolysaccharide Heterogeneity. Journal of Bacteriology, 2013, 195, 4854-4864.	2.2	37
47	Beclin 1 Is Required for Starvation-Enhanced, but Not Rapamycin-Enhanced, LC3-Associated Phagocytosis of Burkholderia pseudomallei in RAW 264.7 Cells. Infection and Immunity, 2013, 81, 271-277.	2.2	26
48	Evolutionary Analysis of Burkholderia pseudomallei Identifies Putative Novel Virulence Genes, Including a Microbial Regulator of Host Cell Autophagy. Journal of Bacteriology, 2013, 195, 5487-5498.	2.2	16
49	Lipopolysaccharide-Deficient Acinetobacter baumannii Shows Altered Signaling through Host Toll-Like Receptors and Increased Susceptibility to the Host Antimicrobial Peptide LL-37. Infection and Immunity, 2013, 81, 684-689.	2.2	68
50	The Fimbrial Protein FlfA from Gallibacterium anatis Is a Virulence Factor and Vaccine Candidate. Infection and Immunity, 2013, 81, 1964-1973.	2.2	35
51	Identification of a DNA-Damage-Inducible Regulon in Acinetobacter baumannii. Journal of Bacteriology, 2013, 195, 5577-5582.	2.2	30
52	Characterization of the lipopolysaccharide from Pasteurella multocida Heddleston serovar 9: Identification of a proposed bi-functional dTDP-3-acetamido-3,6-dideoxy-Â-D-glucose biosynthesis enzyme. Glycobiology, 2012, 22, 332-344.	2.5	13
53	Natural Transformation of Gallibacterium anatis. Applied and Environmental Microbiology, 2012, 78, 4914-4922.	3.1	38
54	Colistin-Resistant, Lipopolysaccharide-Deficient Acinetobacter baumannii Responds to Lipopolysaccharide Loss through Increased Expression of Genes Involved in the Synthesis and Transport of Lipoproteins, Phospholipids, and Poly-Î ² -1,6- <i>N</i> Acetylglucosamine. Antimicrobial Agents and Chemotherapy, 2012, 56, 59-69.	3.2	173

JOHN D BOYCE

#	Article	IF	CITATIONS
55	Pathogenomics of Pasteurella multocida. Current Topics in Microbiology and Immunology, 2012, 361, 23-38.	1.1	38
56	The Key Surface Components of Pasteurella multocida: Capsule and Lipopolysaccharide. Current Topics in Microbiology and Immunology, 2012, 361, 39-51.	1.1	42
57	Pasteurella multocida: Diseases and Pathogenesis. Current Topics in Microbiology and Immunology, 2012, 361, 1-22.	1.1	167
58	Cell surface hydrophobicity of colistin-susceptible vs resistant Acinetobacter baumannii determined by contact angles: methodological considerations and implications. Journal of Applied Microbiology, 2012, 113, 940-951.	3.1	9
59	Screening of 71 P. multocida Proteins for Protective Efficacy in a Fowl Cholera Infection Model and Characterization of the Protective Antigen PlpE. PLoS ONE, 2012, 7, e39973.	2.5	32
60	Effect of colistin exposure and growth phase on the surface properties of live Acinetobacter baumannii cells examined by atomic force microscopy. International Journal of Antimicrobial Agents, 2011, 38, 493-501.	2.5	30
61	Strategies for Intracellular Survival of Burkholderia pseudomallei. Frontiers in Microbiology, 2011, 2, 170.	3.5	106
62	The Burkholderia pseudomallei Type III Secretion System and BopA Are Required for Evasion of LC3-Associated Phagocytosis. PLoS ONE, 2011, 6, e17852.	2.5	140
63	Pasteurella multocida Heddleston serovars 1 and 14 express different lipopolysaccharide structures but share the same lipopolysaccharide biosynthesis outer core locus. Veterinary Microbiology, 2011, 150, 289-296.	1.9	30
64	Pasteurella multocida lipopolysaccharide: The long and the short of it. Veterinary Microbiology, 2011, 153, 109-115.	1.9	54
65	Necrotic Enteritis-Derived Clostridium perfringens Strain with Three Closely Related Independently Conjugative Toxin and Antibiotic Resistance Plasmids. MBio, 2011, 2, .	4.1	75
66	Different surface charge of colistin-susceptible and -resistant Acinetobacter baumannii cells measured with zeta potential as a function of growth phase and colistin treatment. Journal of Antimicrobial Chemotherapy, 2011, 66, 126-133.	3.0	99
67	Role for the Burkholderia pseudomallei Type Three Secretion System Cluster 1 bpscN Gene in Virulence. Infection and Immunity, 2011, 79, 3659-3664.	2.2	28
68	Insertion Sequence IS <i>Aba11</i> Is Involved in Colistin Resistance and Loss of Lipopolysaccharide in Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 2011, 55, 3022-3024.	3.2	191
69	Outer membrane proteins of Pasteurella multocida. Veterinary Microbiology, 2010, 144, 1-17.	1.9	112
70	Natural Selection in the Chicken Host Identifies 3-Deoxy- <scp>d</scp> - <i>manno</i> - Octulosonic Acid Kinase Residues Essential for Phosphorylation of <i>Pasteurella multocida</i> Lipopolysaccharide. Infection and Immunity, 2010, 78, 3669-3677.	2.2	9
71	FimR and FimS: Biofilm Formation and Gene Expression in <i>Porphyromonas gingivalis</i> . Journal of Bacteriology, 2010, 192, 1332-1343.	2.2	20
72	Fis Is Essential for Capsule Production in Pasteurella multocida and Regulates Expression of Other Important Virulence Factors. PLoS Pathogens, 2010, 6, e1000750.	4.7	71

JOHN D BOYCE

#	Article	IF	CITATIONS
73	Colistin Resistance in <i>Acinetobacter baumannii</i> Is Mediated by Complete Loss of Lipopolysaccharide Production. Antimicrobial Agents and Chemotherapy, 2010, 54, 4971-4977.	3.2	699
74	Identification of Novel Glycosyltransferases Required for Assembly of the <i>Pasteurella multocida</i> A:1 Lipopolysaccharide and Their Involvement in Virulence. Infection and Immunity, 2009, 77, 1532-1542.	2.2	27
75	Comparative transcriptomic analysis of Porphyromonas gingivalisbiofilm and planktonic cells. BMC Microbiology, 2009, 9, 18.	3.3	61
76	The molecular and cellular basis of pathogenesis in melioidosis: how does <i>Burkholderia pseudomallei</i> cause disease?. FEMS Microbiology Reviews, 2009, 33, 1079-1099.	8.6	131
77	Structural and Genetic Basis for the Serological Differentiation of <i>Pasteurella multocida</i> Heddleston Serotypes 2 and 5. Journal of Bacteriology, 2009, 191, 6950-6959.	2.2	34
78	NetB, a New Toxin That Is Associated with Avian Necrotic Enteritis Caused by Clostridium perfringens. PLoS Pathogens, 2008, 4, e26.	4.7	494
79	Characterization of TolC Efflux Pump Proteins from <i>Pasteurella multocida</i> . Antimicrobial Agents and Chemotherapy, 2008, 52, 4166-4171.	3.2	11
80	Stimulation of autophagy suppresses the intracellular survival of <i>Burkholderia pseudomallei</i> in mammalian cell lines. Autophagy, 2008, 4, 744-753.	9.1	134
81	Pasteurella multocida Expresses Two Lipopolysaccharide Glycoforms Simultaneously, but Only a Single Form Is Required for Virulence: Identification of Two Acceptor-Specific Heptosyl I Transferases. Infection and Immunity, 2007, 75, 3885-3893.	2.2	47
82	Decoration of <i>Pasteurella multocida</i> Lipopolysaccharide with Phosphocholine Is Important for Virulence. Journal of Bacteriology, 2007, 189, 7384-7391.	2.2	44
83	Identification of novel immunogens in Pasteurella multocida. Microbial Cell Factories, 2007, 6, 3.	4.0	37
84	Genome sequence and identification of candidate vaccine antigens from the animal pathogen Dichelobacter nodosus. Nature Biotechnology, 2007, 25, 569-575.	17.5	66
85	How does Pasteurella multocida respond to the host environment?. Current Opinion in Microbiology, 2006, 9, 117-122.	5.1	37
86	Analysis of thePasteurella multocida outer membrane sub-proteome and its response to thein vivo environment of the natural host. Proteomics, 2006, 6, 870-880.	2.2	75
87	Pasteurella multocida pathogenesis: 125 years after Pasteur. FEMS Microbiology Letters, 2006, 265, 1-10.	1.8	319
88	The Pasteurella multocida nrfE Gene Is Upregulated during Infection and Is Essential for Nitrite Reduction but Not for Virulence. Journal of Bacteriology, 2005, 187, 2278-2285.	2.2	10
89	Vaccination against fowl cholera with acapsular Pasteurella multocida A:1. Vaccine, 2005, 23, 2751-2755.	3.8	17
90	Genomic-scale Analysis of Bacterial Gene and Protein Expression in the Host. Emerging Infectious Diseases, 2004, 10, 1357-1362.	4.3	36

Јони D Воусе

#	Article	IF	CITATIONS
91	A Heptosyltransferase Mutant of Pasteurella multocida Produces a Truncated Lipopolysaccharide Structure and Is Attenuated in Virulence. Infection and Immunity, 2004, 72, 3436-3443.	2.2	62
92	Genomic-scale analysis of Pasteurella multocida gene expression during growth within liver tissue of chickens with fowl cholera. Microbes and Infection, 2004, 6, 290-298.	1.9	32
93	Characterization of two lipoproteins in Pasteurella multocida. Microbes and Infection, 2004, 6, 58-67.	1.9	17
94	Functional characterization of HgbB, a new hemoglobin binding protein of Pasteurella multocida. Microbial Pathogenesis, 2003, 34, 287-296.	2.9	31
95	Signature-Tagged Mutagenesis of Pasteurella multocida Identifies Mutants Displaying Differential Virulence Characteristics in Mice and Chickens. Infection and Immunity, 2003, 71, 5440-5446.	2.2	52
96	Genomic Scale Analysis of Pasteurella multocida Gene Expression during Growth within the Natural Chicken Host. Infection and Immunity, 2002, 70, 6871-6879.	2.2	88
97	Acapsular Pasteurella multocida B:2 Can Stimulate Protective Immunity against Pasteurellosis. Infection and Immunity, 2001, 69, 1943-1946.	2.2	20
98	Sequence Analysis and Molecular Characterization of the Lactococcus lactis Temperate Bacteriophage BK5-T. Applied and Environmental Microbiology, 2001, 67, 3564-3576.	3.1	31
99	In Vivo-Expressed Genes of Pasteurella multocida. Infection and Immunity, 2001, 69, 3004-3012.	2.2	36
100	Role of Capsule in the Pathogenesis of Fowl Cholera Caused by Pasteurella multocida Serogroup A. Infection and Immunity, 2001, 69, 2487-2492.	2.2	125
101	Genetic Organization of Pasteurella multocida cap Loci and Development of a Multiplex Capsular PCR Typing System. Journal of Clinical Microbiology, 2001, 39, 924-929.	3.9	378
102	Genetic Organization of <i>Pasteurella multocida cap</i> Loci and Development of a Multiplex Capsular PCR Typing System. Journal of Clinical Microbiology, 2001, 39, 2377-2377.	3.9	6
103	Genetic organisation of the capsule biosynthetic locus of Pasteurella multocida M1404 (B:2). Veterinary Microbiology, 2000, 72, 121-134.	1.9	45
104	The Capsule Is a Virulence Determinant in the Pathogenesis of Pasteurella multocida M1404 (B:2). Infection and Immunity, 2000, 68, 3463-3468.	2.2	126
105	Pasteurella multocida capsule: composition, function and genetics. Journal of Biotechnology, 2000, 83, 153-160.	3.8	69
106	Analysis of the DNA sequence, gene expression, origin of replication and modular structure of the Lactococcus lactis lytic bacteriophage sk1. Molecular Microbiology, 1997, 26, 49-64.	2.5	133
107	Sequence analysis of the Lactococcus lactis temperate bacteriophage BK5-T and demonstration that the phage DNA has cohesive ends. Applied and Environmental Microbiology, 1995, 61, 4089-4098.	3.1	61
108	Identification of prophage genes expressed in lysogens of the Lactococcus lactis bacteriophage BK5-T. Applied and Environmental Microbiology, 1995, 61, 4099-4104.	3.1	55

#	Article	IF	CITATIONS
109	Spontaneous deletion mutants of the Lactococcus lactis temperate bacteriophage BK5-T and localization of the BK5-T attP site. Applied and Environmental Microbiology, 1995, 61, 4105-4109.	3.1	39