Igor A Astsaturov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6517335/publications.pdf

Version: 2024-02-01

58 papers

4,768 citations

32 h-index 56 g-index

61 all docs

61 docs citations

61 times ranked 8443 citing authors

#	Article	IF	CITATIONS
1	Netrin G1 Promotes Pancreatic Tumorigenesis through Cancer-Associated Fibroblast–Driven Nutritional Support and Immunosuppression. Cancer Discovery, 2021, 11, 446-479.	9.4	97
2	Feasibility of Fitness Tracker Usage to Assess Activity Level and Toxicities in Patients With Colorectal Cancer. JCO Clinical Cancer Informatics, 2021, 5, 125-133.	2.1	13
3	Large-scale analysis of KMT2 mutations defines a distinctive molecular subset with treatment implication in gastric cancer. Oncogene, 2021, 40, 4894-4905.	5.9	19
4	Evaluating the impact of age on immune checkpoint therapy biomarkers. Cell Reports, 2021, 36, 109599.	6.4	27
5	Preparation of mouse pancreatic tumor for single-cell RNA sequencing and analysis of the data. STAR Protocols, 2021, 2, 100989.	1.2	1
6	Platelet microRNAs inhibit primary tumor growth via broad modulation of tumor cell mRNA expression in ectopic pancreatic cancer in mice. PLoS ONE, 2021, 16, e0261633.	2.5	7
7	Cholesterol Pathway Inhibition Induces TGF- \hat{l}^2 Signaling to Promote Basal Differentiation in Pancreatic Cancer. Cancer Cell, 2020, 38, 567-583.e11.	16.8	91
8	A framework for advancing our understanding of cancer-associated fibroblasts. Nature Reviews Cancer, 2020, 20, 174-186.	28.4	2,012
9	Statins Synergize with Hedgehog Pathway Inhibitors for Treatment of Medulloblastoma. Clinical Cancer Research, 2018, 24, 1375-1388.	7.0	46
10	Induction Therapy for Locally Advanced, Resectable Esophagogastric Cancer. American Journal of Clinical Oncology: Cancer Clinical Trials, 2017, 40, 393-398.	1.3	7
11	Perspectives of HER2-targeting in gastric and esophageal cancer. Expert Opinion on Investigational Drugs, 2017, 26, 531-540.	4.1	71
12	LDL cholesterol counteracts the antitumour effect of tyrosine kinase inhibitors against renal cell carcinoma. British Journal of Cancer, 2017, 116, 1203-1207.	6.4	25
13	Future Clinical Trials. Surgical Oncology Clinics of North America, 2017, 26, 791-797.	1.5	4
14	CRISPR/Cas9 Technique for Identification of Genes Regulating Oxaliplatin Resistance of Pancreatic Cancer Cell Line. BioNanoScience, 2017, 7, 97-100.	3.5	5
15	Targeted delivery of chemotherapy using HSP90 inhibitor drug conjugates is highly active against pancreatic cancer models. Oncotarget, 2017, 8, 4399-4409.	1.8	12
16	Anti-pancreatic cancer activity of ONC212 involves the unfolded protein response (UPR) and is reduced by IGF1-R and GRP78/BIP. Oncotarget, 2017, 8, 81776-81793.	1.8	34
17	Prognostic Significance of MUC-1 in Circulating Tumor Cells in Patients With Metastatic Pancreatic Adenocarcinoma. Pancreas, 2016, 45, 1131-1135.	1.1	47
18	Screening of Conditionally Reprogrammed Patient-Derived Carcinoma Cells Identifies ERCC3–MYC Interactions as a Target in Pancreatic Cancer. Clinical Cancer Research, 2016, 22, 6153-6163.	7.0	56

#	Article	IF	CITATIONS
19	The right and wrong of DOKing the nuclear receptor. EBioMedicine, 2016, 8, 7.	6.1	O
20	Molecular profiling of neuroendocrine malignancies to identify prognostic and therapeutic markers: a Fox Chase Cancer Center Pilot Study. British Journal of Cancer, 2016, 115, 564-570.	6.4	88
21	EGFR and RB1 as Dual Biomarkers in HPV-Negative Head and Neck Cancer. Molecular Cancer Therapeutics, 2016, 15, 2486-2497.	4.1	42
22	Increased Time From Neoadjuvant Chemoradiation to Surgery Is Associated With Higher Pathologic Complete Response Rates in Esophageal Cancer. Annals of Thoracic Surgery, 2015, 99, 270-276.	1.3	55
23	Endogenous Sterol Metabolites Regulate Growth of EGFR/KRAS-Dependent Tumors via LXR. Cell Reports, 2015, 12, 1927-1938.	6.4	67
24	HSP90 Inhibitor–SN-38 Conjugate Strategy for Targeted Delivery of Topoisomerase I Inhibitor to Tumors. Molecular Cancer Therapeutics, 2015, 14, 2422-2432.	4.1	24
25	Re-purposing clinical kinase inhibitors to enhance chemosensitivity by overriding checkpoints. Cell Cycle, 2014, 13, 2172-2191.	2.6	14
26	Molecular Pathways: Sterols and Receptor Signaling in Cancer. Clinical Cancer Research, 2014, 20, 28-34.	7.0	104
27	Successful Imatinib Therapy for Neuroendocrine Carcinoma With ActivatingKITMutation: A Case Study. Journal of the National Comprehensive Cancer Network: JNCCN, 2014, 12, 847-852.	4.9	14
28	Profiling of 1,350 neuroendocrine tumors for identification of multiple potential drug targets Journal of Clinical Oncology, 2014, 32, 4113-4113.	1.6	4
29	Aurora kinases in head and neck cancer. Lancet Oncology, The, 2013, 14, e425-e435.	10.7	55
30	Aurora A kinase (AURKA) in normal and pathological cell division. Cellular and Molecular Life Sciences, 2013, 70, 661-687.	5.4	349
31	Network Analysis Identifies an HSP90-Central Hub Susceptible in Ovarian Cancer. Clinical Cancer Research, 2013, 19, 5053-5067.	7.0	45
32	Targeting C4-Demethylating Genes in the Cholesterol Pathway Sensitizes Cancer Cells to EGF Receptor Inhibitors via Increased EGF Receptor Degradation. Cancer Discovery, 2013, 3, 96-111.	9.4	58
33	DUSP6 regulates drug sensitivity by modulating DNA damage response. British Journal of Cancer, 2013, 109, 1063-1071.	6.4	31
34	TRPV1 Gates Tissue Access and Sustains Pathogenicity in Autoimmune Encephalitis. Molecular Medicine, 2013, 19, 149-159.	4.4	24
35	Relationship of increased aurora kinase A gene copy number, prognosis and response to chemotherapy in patients with metastatic colorectal cancer. British Journal of Cancer, 2012, 106, 748-755.	6.4	38
36	Regulation of cholesterol biosynthesis and cancer signaling. Current Opinion in Pharmacology, 2012, 12, 710-716.	3.5	74

#	Article	IF	CITATIONS
37	Effective antibody therapy induces host-protective antitumor immunity that is augmented by TLR4 agonist treatment. Cancer Immunology, Immunotherapy, 2012, 61, 49-61.	4.2	35
38	Abstract 721: Expression of Aurora A and Phospho-Aurora-A is predictive of survival in patients with head and neck cancer. , 2012 , , .		2
39	Phase II and Coagulation Cascade Biomarker Study of Bevacizumab With or Without Docetaxel in Patients With Previously Treated Metastatic Pancreatic Adenocarcinoma. American Journal of Clinical Oncology: Cancer Clinical Trials, 2011, 34, 70-75.	1.3	33
40	Significance of Pathologic Response to Preoperative Therapy in Pancreatic Cancer. Annals of Surgical Oncology, 2011, 18, 3601-3607.	1.5	78
41	Defining Venous Involvement in Borderline Resectable Pancreatic Cancer. Annals of Surgical Oncology, 2010, 17, 2832-2838.	1.5	128
42	Chemotherapy and signaling. Cancer Biology and Therapy, 2010, 10, 839-853.	3.4	88
43	Synthetic Lethal Screen of an EGFR-Centered Network to Improve Targeted Therapies. Science Signaling, 2010, 3, ra67.	3.6	131
44	Mechanisms of tumor resistance to EGFR-targeted therapies. Expert Opinion on Therapeutic Targets, 2009, 13, 339-362.	3.4	77
45	Targeting EGFR resistance networks in head and neck cancer. Cellular Signalling, 2009, 21, 1255-1268.	3.6	72
46	The Emerging Role of Cetuximab in Head and Neck Cancer: A 2007 Perspective. Cancer Investigation, 2008, 26, 96-103.	1.3	12
47	Clinical Application of EGFR Inhibitors in Head and Neck Squamous Cell Cancer. Cancer Treatment and Research, 2008, , 132-149.	0.5	1
48	Clinical application of EGFR inhibitors in head and neck squamous cell cancer. Cancer Treatment and Research, 2008, 139, 135-52.	0.5	6
49	EGFR-Targeting Monoclonal Antibodies in Head and Neck Cancer. Current Cancer Drug Targets, 2007, 7, 650-665.	1.6	24
50	Selective Raf inhibition in cancer therapy. Expert Opinion on Therapeutic Targets, 2007, 11, 1587-1609.	3.4	63
51	Enhanced viral and tumor immunity with intranodal injection of canary pox viruses expressing the melanoma antigen, gp100. Cancer, 2006, 106, 890-899.	4.1	44
52	EGFR-Targeting Monoclonal Antibodies in Head and Neck Cancer. Current Cancer Drug Targets, 2006, 6, 691-710.	1.6	40
53	Targeting epidermal growth factor receptor signaling in the treatment of head and neck cancer. Expert Review of Anticancer Therapy, 2006, 6, 1179-1193.	2.4	35
54	Overview of Monoclonal Antibodies and Small Molecules Targeting the Epidermal Growth Factor Receptor Pathway in Colorectal Cancer. Clinical Colorectal Cancer, 2005, 5, S71-S80.	2.3	27

#	Article	IF	CITATION
55	Amplification of virus-induced antimelanoma T-cell reactivity by high-dose interferon-alpha2b: implications for cancer vaccines. Clinical Cancer Research, 2003, 9, 4347-55.	7.0	43
56	ICA69null Nonobese Diabetic Mice Develop Diabetes, but Resist Disease Acceleration by Cyclophosphamide. Journal of Immunology, 2002, 168, 475-482.	0.8	26
57	Primary Sjögren's syndrome and deficiency of ICA69. Lancet, The, 2002, 360, 1063-1069.	13.7	50
58	Type I Diabetes and Multiple Sclerosis Patients Target Islet Plus Central Nervous System Autoantigens; Nonimmunized Nonobese Diabetic Mice Can Develop Autoimmune Encephalitis. Journal of Immunology, 2001, 166, 2831-2841.	0.8	84