
Isidro G. Collado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6516800/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochemistry Reviews, 2007, 7, 89-123.	6.5	450
2	Stereoselective biotransformations using fungi as biocatalysts. Tetrahedron: Asymmetry, 2009, 20, 385-397.	1.8	208
3	Functional Analysis of the Cytochrome P450 Monooxygenase Gene bcbot1 of Botrytis cinerea Indicates That Botrydial Is a Strain-Specific Virulence Factor. Molecular Plant-Microbe Interactions, 2005, 18, 602-612.	2.6	207
4	The <i>Botrytis cinerea</i> phytotoxin botcinic acid requires two polyketide synthases for production and has a redundant role in virulence with botrydial. Molecular Plant Pathology, 2011, 12, 564-579.	4.2	189
5	Sesquiterpene Synthase from the Botrydial Biosynthetic Gene Cluster of the Phytopathogen <i>Botrytis cinerea</i> . ACS Chemical Biology, 2008, 3, 791-801.	3.4	161
6	The putative role of botrydial and related metabolites in the infection mechanism of Botrytis cinerea. Journal of Chemical Ecology, 2002, 28, 997-1005.	1.8	130
7	Thctf1 transcription factor of Trichoderma harzianum is involved in 6-pentyl-2H-pyran-2-one production and antifungal activity. Fungal Genetics and Biology, 2009, 46, 17-27.	2.1	130
8	Botrydial is produced in plant tissues infected by Botrytis cinerea. Phytochemistry, 2001, 57, 689-692.	2.9	122
9	Pollutants Biodegradation by Fungi. Current Organic Chemistry, 2009, 13, 1194-1214.	1.6	119
10	Fungal terpene metabolites: biosynthetic relationships and the control of the phytopathogenic fungus Botrytis cinerea. Natural Product Reports, 2007, 24, 674.	10.3	111
11	Overexpression of the trichodiene synthase gene tri5 increases trichodermin production and antimicrobial activity in Trichoderma brevicompactum. Fungal Genetics and Biology, 2011, 48, 285-296.	2.1	110
12	The cAMP-Dependent Signaling Pathway and Its Role in Conidial Germination, Growth, and Virulence of the Gray Mold <i>Botrytis cinerea</i> . Molecular Plant-Microbe Interactions, 2008, 21, 1443-1459.	2.6	103
13	The Sesquiterpene Botrydial Produced by <i>Botrytis cinerea</i> Induces the Hypersensitive Response on Plant Tissues and Its Action Is Modulated by Salicylic Acid and Jasmonic Acid Signaling. Molecular Plant-Microbe Interactions, 2011, 24, 888-896.	2.6	96
14	Non-peptide Metabolites from the Genus <i>Bacillus</i> . Journal of Natural Products, 2011, 74, 893-899.	3.0	91
15	Natural Variation in the VELVET Gene bcvel1 Affects Virulence and Light-Dependent Differentiation in Botrytis cinerea. PLoS ONE, 2012, 7, e47840.	2.5	89
16	Relevance of trichothecenes in fungal physiology: Disruption of tri5 in Trichoderma arundinaceum. Fungal Genetics and Biology, 2013, 53, 22-33.	2.1	89
17	The <i>Botrytis cinerea</i> Reg1 Protein, a Putative Transcriptional Regulator, Is Required for Pathogenicity, Conidiogenesis, and the Production of Secondary Metabolites. Molecular Plant-Microbe Interactions, 2011, 24, 1074-1085.	2.6	85
18	BcAtf1, a global regulator, controls various differentiation processes and phytotoxin production in <i>Botrytis cinerea</i> . Molecular Plant Pathology, 2012, 13, 704-718.	4.2	85

#	Article	IF	CITATIONS
19	Recent advances in the chemistry of caryophyllene. Natural Product Reports, 1998, 15, 187.	10.3	79
20	The Mitogen-Activated Protein Kinase BcSak1 of <i>Botrytis cinerea</i> Is Required for Pathogenic Development and Has Broad Regulatory Functions Beyond Stress Response. Molecular Plant-Microbe Interactions, 2012, 25, 802-816.	2.6	77
21	Secondary metabolites isolated from Colletotrichum species. Natural Product Reports, 2003, 20, 426-431.	10.3	76
22	The phytotoxic activity of some metabolites of Botrytis cinerea. Phytochemistry, 1996, 42, 383-387.	2.9	68
23	Virulence-Toxin Production Relationship in Isolates of the Plant Pathogenic Fungus Botrytis cinerea. Journal of Phytopathology, 2004, 152, 563-566.	1.0	62
24	Biologically active diterpenes containing a gem-dimethylcyclopropane subunit: an intriguing source of PKC modulators. Natural Product Reports, 2014, 31, 940-952.	10.3	60
25	The botrydial biosynthetic gene cluster of Botrytis cinerea displays a bipartite genomic structure and is positively regulated by the putative Zn(II)2Cys6 transcription factor BcBot6. Fungal Genetics and Biology, 2016, 96, 33-46.	2.1	60
26	Biological activity of natural sesquiterpenoids containing a gem-dimethylcyclopropane unit. Natural Product Reports, 2015, 32, 1236-1248.	10.3	58
27	Biotransformation of the Fungistatic Sesquiterpenoid Patchoulol byBotrytiscinerea. Journal of Natural Products, 1999, 62, 437-440.	3.0	57
28	Azaphilones from the Endophyte <i>Chaetomium globosum</i> . Journal of Natural Products, 2011, 74, 1182-1187.	3.0	57
29	Botcinic acid biosynthesis in Botrytis cinerea relies on a subtelomeric gene cluster surrounded by relics of transposons and is regulated by the Zn2Cys6 transcription factor BcBoa13. Current Genetics, 2019, 65, 965-980.	1.7	57
30	Biotransformations by Colletotrichum species. Tetrahedron: Asymmetry, 2003, 14, 1229-1239.	1.8	56
31	Novel aspinolide production by <scp><i>T</i></scp> <i>richoderma arundinaceum</i> with a potential role in <scp><i>B</i></scp> <i>otrytis cinerea</i> antagonistic activity and plant defence priming. Environmental Microbiology, 2015, 17, 1103-1118.	3.8	56
32	Screening study for potential lead compounds for natural product-based fungicides: I. Synthesis and in vitro evaluation of coumarins against Botrytis cinerea. Pest Management Science, 2004, 60, 927-932.	3.4	55
33	Botrytis Species: An Intriguing Source of Metabolites with a Wide Range of Biological Activities. Structure, Chemistry and Bioactivity of Metabolites Isolated from Botrytis Species Current Organic Chemistry, 2000, 4, 1261-1286.	1.6	54
34	Endophytic microorganisms for biocontrol of the phytopathogenic fungus Botrytis cinerea. Phytochemistry Reviews, 2020, 19, 721-740.	6.5	52
35	Biologically active sesquiterpenoid metabolites from the fungus Botrytis cinerea. Phytochemistry, 1996, 41, 513-517.	2.9	50
36	Biocatalysis Applied to the Synthesis of Agrochemicals. Current Organic Chemistry, 2006, 10, 2037-2054.	1.6	50

#	Article	IF	CITATIONS
37	The cleavage of caryophyllene oxide catalysed by tetracyanoethylene. Tetrahedron, 1996, 52, 7961-7972.	1.9	49
38	Isolation of new phenylacetylingol derivatives that reactivate HIV-1 latency and a novel spirotriterpenoid from Euphorbia officinarum latex. Bioorganic and Medicinal Chemistry, 2007, 15, 4577-4584.	3.0	49
39	An efficient synthesis of furanocoumarins. Tetrahedron, 1992, 48, 4239-4246.	1.9	48
40	Structure-activity relationships of new phytotoxic metabolites with the botryane skeleton from Botrytis cinerea. Tetrahedron, 1999, 55, 2389-2400.	1.9	45
41	Overexpression of the Trichoderma brevicompactum tri5 Gene: Effect on the Expression of the Trichodermin Biosynthetic Genes and on Tomato Seedlings. Toxins, 2011, 3, 1220-1232.	3.4	45
42	Multiple knockout mutants reveal a high redundancy of phytotoxic compounds contributing to necrotrophic pathogenesis of Botrytis cinerea. PLoS Pathogens, 2022, 18, e1010367.	4.7	45
43	Flavonoids from Centaurea clementei. Journal of Natural Products, 1985, 48, 819-822.	3.0	43
44	Metabolites from a shake culture of Botrytis cinerea. Phytochemistry, 1995, 38, 647-650.	2.9	42
45	Biotransformations by Botrytis species. Journal of Molecular Catalysis B: Enzymatic, 2001, 13, 77-93.	1.8	40
46	Diketopiperazines produced by endophytic fungi found in association with two Asteraceae species. Phytochemistry, 2010, 71, 1423-1429.	2.9	40
47	Secobotrytriendiol and Related Sesquiterpenoids:Â New Phytotoxic Metabolites fromBotrytiscinerea. Journal of Natural Products, 2000, 63, 182-184.	3.0	39
48	Screening Study of Lead Compounds for Natural Product-Based Fungicides:Â Antifungal Activity and Biotransformation of 6α,7α-Dihydroxy-β-himachalene byBotrytis cinerea. Journal of Agricultural and Food Chemistry, 2005, 53, 6673-6677.	5.2	39
49	A GC–MS untargeted metabolomics approach for the classification of chemical differences in grape juices based on fungal pathogen. Food Chemistry, 2019, 270, 375-384.	8.2	38
50	Chemical Transformations on Botryane Skeleton. Effect on the Cytotoxic Activity. Journal of Natural Products, 2003, 66, 344-349.	3.0	37
51	Biosynthesis of abscisic acid in fungi: identification of a sesquiterpene cyclase as the key enzyme in <i>Botrytis cinerea</i> . Environmental Microbiology, 2018, 20, 2469-2482.	3.8	37
52	Inhibition of Botrytis cinerea by New Sesquiterpenoid Compounds Obtained from the Rearrangement of Isocaryophyllene. Journal of Natural Products, 1994, 57, 738-746.	3.0	36
53	Antituberculosis activity of natural and semisynthetic azorellane and mulinane diterpenoids. Fìtoterapìâ, 2010, 81, 50-54.	2.2	35
54	The Antifungal Activity of Widdrol and Its Biotransformation byColletotrichum gloeosporioides(penz.) Penz. & Sacc. andBotrytis cinereaPers.:Â Fr Journal of Agricultural and Food Chemistry, 2006, 54, 7517-7521.	5.2	33

#	Article	IF	CITATIONS
55	Four New Lactones from Botrytis cinerea. Journal of Natural Products, 2002, 65, 1724-1726.	3.0	32
56	The Biotransformation of Some Clovanes byBotrytis cinerea. Journal of Natural Products, 1998, 61, 1348-1351.	3.0	31
57	Biotransformation of Caryophyllene Oxide by Botrytis cinerea. Journal of Natural Products, 1999, 62, 41-44.	3.0	31
58	Synthesis and free radical scavenging activity of a novel metabolite from the fungus Colletotrichum gloeosporioides. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 5836-5839.	2.2	31
59	Novel Rearrangement of an Isocaryolane Sesquiterpenoid under Mitsunobu Conditions. Journal of Organic Chemistry, 2000, 65, 7786-7791.	3.2	30
60	Biotransformation of the fungistatic sesquiterpenoids patchoulol, ginsenol, cedrol and globulol by Botrytis cinerea. Journal of Molecular Catalysis B: Enzymatic, 2001, 11, 329-334.	1.8	30
61	Genetic and Molecular Basis of Botrydial Biosynthesis: Connecting Cytochrome P450-Encoding Genes to Biosynthetic Intermediates. ACS Chemical Biology, 2016, 11, 2838-2846.	3.4	30
62	Some key metabolic intermediates in the biosynthesis of botrydial and related compounds. Tetrahedron, 2001, 57, 1929-1933.	1.9	29
63	Sesquiterpenes from the wood of Juniperus lucayana. Phytochemistry, 2007, 68, 2409-2414.	2.9	29
64	The current status on secondary metabolites produced by plant pathogenic Colletotrichum species. Phytochemistry Reviews, 2019, 18, 215-239.	6.5	29
65	Synthesis and antifungal activity of analogues of naturally occurring botrydial precursors. Journal of Chemical Ecology, 1994, 20, 2631-2644.	1.8	28
66	Sn(OTf)2 catalysed regioselective styrene oxide ring opening with aromatic amines. Tetrahedron, 2008, 64, 11732-11737.	1.9	28
67	Endophytic Bacteria Bacillus subtilis, Isolated from Zea mays, as Potential Biocontrol Agent against Botrytis cinerea. Biology, 2021, 10, 492.	2.8	27
68	Some metabolites of Botrytis cinerea related to botcinolide. Phytochemistry, 1996, 42, 1621-1624.	2.9	26
69	An improved synthesis of 3-(1,1-dimethylallyl)coumarins. Tetrahedron, 1993, 49, 1701-1710.	1.9	25
70	Biotransformation of (4E,8R)-Caryophyll-4(5)-en-8-ol byBotrytiscinerea. Journal of Natural Products, 2000, 63, 44-47.	3.0	25
71	Trichothecenes and aspinolides produced by <i>Trichoderma arundinaceum</i> regulate expression of <i>Botrytis cinerea</i> genes involved in virulence and growth. Environmental Microbiology, 2016, 18, 3991-4004.	3.8	25
72	Hemisynthesis and absolute configuration of novel 6-pentyl-2H-pyran-2-one derivatives from Trichoderma spp Tetrahedron, 2009, 65, 4834-4840.	1.9	24

#	Article	IF	CITATIONS
73	Stereochemistry of Epoxidation of Some Caryophyllenols. Journal of Organic Chemistry, 1997, 62, 1965-1969.	3.2	22
74	Biotransformation of the fungistatic sesquiterpenoid ginsenol by Botrytis cinerea. Journal of the Chemical Society Perkin Transactions 1, 1999, , 727-730.	0.9	22
75	Studies on the Stereostructure of Eudesmanolides from Umbelliferae: Total Synthesis of (+)-Decipienin A. Tetrahedron, 2000, 56, 3409-3414.	1.9	22
76	Enantiomeric oxidation of organic sulfides by the filamentous fungi Botrytis cinerea, Eutypa lata and Trichoderma viride. Journal of Molecular Catalysis B: Enzymatic, 2007, 49, 18-23.	1.8	22
77	Synthesis and Quantitative Structureâ^ Antifungal Activity Relationships of Clovane Derivatives against Botrytis cinerea. Journal of Agricultural and Food Chemistry, 2009, 57, 2420-2428.	5.2	22
78	Isotopic Labeling Studies Reveal the Patulin Detoxification Pathway by the Biocontrol Yeast <i>Rhodotorula kratochvilovae</i> LS11. Journal of Natural Products, 2018, 81, 2692-2699.	3.0	22
79	The biodegradation of the phytotoxic metabolite botrydial by its parent organism, Botrytis cinerea. Journal of Chemical Research, 2004, 2004, 441-443.	1.3	21
80	Biosynthetic Studies on the Botcinolide Skeleton:  New Hydroxylated Lactones from Botrytis cinerea. Journal of Organic Chemistry, 2006, 71, 562-565.	3.2	21
81	A topological substructural molecular design to predict soil sorption coefficients for pesticides. Molecular Diversity, 2006, 10, 109-118.	3.9	21
82	Quantitative structure–activity relationship studies for the prediction of antifungal activity of N-arylbenzenesulfonamides against Botrytis cinerea. Journal of Molecular Graphics and Modelling, 2007, 25, 680-690.	2.4	21
83	Comparative genome analysis of Bacillus spp. and its relationship with bioactive nonribosomal peptide production. Phytochemistry Reviews, 2013, 12, 685-716.	6.5	21
84	Secondary Metabolism in Botrytis cinerea: Combining Genomic and Metabolomic Approaches. , 2016, , 291-313.		21
85	Terpene synthesis. 1. Chemical transformation of deacylsubexpinnatin into the natural oxetane lactone subexpinnatin C. Journal of Organic Chemistry, 1987, 52, 3323-3326.	3.2	20
86	Antifungal Activity and Biotransformation of Diisophorone byBotrytis cinerea. Journal of Agricultural and Food Chemistry, 2005, 53, 6035-6039.	5.2	20
87	Bioactive metabolites from the Andean flora. Antituberculosis activity of natural and semisynthetic azorellane and mulinane diterpenoids. Phytochemistry Reviews, 2010, 9, 271-278.	6.5	20
88	Terpenoid biotransformations by Mucor species. Phytochemistry Reviews, 2013, 12, 857-876.	6.5	20
89	Chemically Induced Cryptic Sesquiterpenoids and Expression of Sesquiterpene Cyclases in <i>Botrytis cinerea</i> Revealed New Sporogenic (+)-4- <i>Epi</i> eremophil-9-en-11-ols. ACS Chemical Biology, 2016, 11, 1391-1400.	3.4	20
90	Cp2Ti(III)Cl and Analogues as Sustainable Templates in Organic Synthesis. Synthesis, 2018, 50, 2163-2180.	2.3	20

#	Article	IF	CITATIONS
91	Methylene-Linked Bis-NHC Half-Sandwich Ruthenium Complexes: Binding of Small Molecules and Catalysis toward Ketone Transfer Hydrogenation. Organometallics, 2021, 40, 792-803.	2.3	20
92	Integrifolin, a guaianolide from Andryala integrifolia. Phytochemistry, 1984, 23, 912-913.	2.9	19
93	Flavonoids from Artemisia lanata. Phytochemistry, 1986, 25, 1502-1504.	2.9	19
94	Metabolites from Eutypa species that are pathogens on grapes. Natural Product Reports, 2006, 23, 108-116.	10.3	18
95	The role of botrydienediol in the biodegradation of the sesquiterpenoid phytotoxin botrydial by Botrytis cinerea. Tetrahedron, 2006, 62, 8256-8261.	1.9	18
96	Relevance of the deletion of the <i>Tatri4</i> gene in the secondary metabolome of <i>Trichoderma arundinaceum</i> . Organic and Biomolecular Chemistry, 2018, 16, 2955-2965.	2.8	18
97	"An efficient and mild entry to 1,4-dicarbonyl compounds via photochemical addition of acyl radical to electron-deficient olefinsâ€. Tetrahedron Letters, 1990, 31, 3063-3066.	1.4	17
98	Botrylactone: new interest in an old molecule—review of its absolute configuration and related compounds. Tetrahedron, 2011, 67, 417-420.	1.9	17
99	HPLC Analysis of Midodrine and Desglymidodrine in Culture Medium: Evaluation of Static and Shaken Conditions on the Biotransformation by Fungi. Journal of Chromatographic Science, 2013, 51, 460-467.	1.4	17
100	Chemoselective and stereoselective lithium carbenoid mediated cyclopropanation of acyclic allylic alcohols. Organic and Biomolecular Chemistry, 2016, 14, 2731-2741.	2.8	17
101	Guaianolides from Centaurea canariensis. Phytochemistry, 1985, 24, 2107-2109.	2.9	16
102	Structural determination of clementein, a new guaianolide isolated from Centaurea clementei. Tetrahedron Letters, 1983, 24, 1641-1642.	1.4	15
103	Two novel steroids from Euphorbia officinarum latex. Natural Product Research, 2004, 18, 177-181.	1.8	15
104	Further Mulinane and Azorellane Diterpenoids Isolated from Mulinum crassifolium and Azorella compacta. Molecules, 2014, 19, 3898-3908.	3.8	15
105	Structureâ ~ Activity Relationships in the Fungistatic Activity againstBotrytiscinereaof Clovanes Modified on Ring C. Journal of Natural Products, 2004, 67, 793-798.	3.0	14
106	Biotransformation of Bioactive Isocaryolanes by <i>Botrytis cinerea</i> . Journal of Natural Products, 2011, 74, 1707-1712.	3.0	14
107	Botrydial and botcinins produced by <scp><i>B</i></scp> <i>otrytis cinerea</i> regulate the expression of <scp><i>T</i></scp> <i>richoderma arundinaceum</i> genes involved in trichothecene biosynthesis. Molecular Plant Pathology, 2016, 17, 1017-1031.	4.2	14
108	Stereochemistry of a rearrangement of B and C rings in clovane skeleton. Tetrahedron, 1998, 54, 1615-1626.	1.9	13

#	Article	IF	CITATIONS
109	Chromosomal Polymorphism in Botrytis Cinerea Strains. Hereditas, 2004, 124, 31-38.	1.4	13
110	Quantitative Structureâ´'Antifungal Activity Relationships of Some Benzohydrazides against Botrytis cinerea. Journal of Agricultural and Food Chemistry, 2007, 55, 5171-5179.	5.2	13
111	Biocatalytic preparation and absolute configuration of enantiomerically pure fungistatic anti-2-benzylindane derivatives. Study of the detoxification mechanism by Botrytis cinerea. Organic and Biomolecular Chemistry, 2010, 8, 3784.	2.8	13
112	A Shared Biosynthetic Pathway for Botcinins and Botrylactones Revealed through Gene Deletions. ChemBioChem, 2013, 14, 132-136.	2.6	13
113	Unexpected Mild Protection of Alcohols as 2â€ <i>O</i> â€THF and 2â€ <i>O</i> â€THP Ethers Catalysed by Cp ₂ TiCl Reveal an Intriguing Role of the Solvent in the Singleâ€Electron Transfer Reaction. European Journal of Organic Chemistry, 2015, 2015, 6333-6340.	2.4	13
114	Natural Compounds That Modulate the Development of the Fungus Botrytis cinerea and Protect Solanum lycopersicum. Plants, 2019, 8, 111.	3.5	13
115	Structure, chemistry and stereochemistry of clementeins, sesquiterpene lactones from centaurea clementei. Tetrahedron, 1986, 42, 3611-3622.	1.9	12
116	Trimethyl(phenyl)ammonium perbromide, an efficient reagent for the partial synthesis of functionalized sesquiterpene lactones. Tetrahedron Letters, 1990, 31, 563-566.	1.4	12
117	Nucleophilic 1,2 addition of bromine by perbromide reagents. Tetrahedron Letters, 1991, 32, 3217-3220.	1.4	12
118	Mild Epoxidation of Allylic Alcohols Catalyzed by Titanium(III) Complexes: Selectivity and Mechanism. ACS Omega, 2017, 2, 3083-3090.	3.5	12
119	Sesquiterpene lactones from Artemisia lanata. Phytochemistry, 1988, 27, 2229-2233.	2.9	11
120	Novel Rearrangements of Sesquiterpenoid Panasinsane Derivatives under Acidic Conditions. Journal of Organic Chemistry, 2001, 66, 4327-4332.	3.2	11
121	Biocatalytically assisted preparation of antifungal chlorophenylpropanols. Tetrahedron: Asymmetry, 2002, 13, 1681-1686.	1.8	11
122	The Asymmetric Total Synthesis of Cinbotolide: A Revision of the Original Structure. Journal of Organic Chemistry, 2014, 79, 11349-11358.	3.2	11
123	Titanium carbenoid-mediated cyclopropanation of allylic alcohols: selectivity and mechanism. Organic and Biomolecular Chemistry, 2015, 13, 6325-6332.	2.8	11
124	<i>N</i> -Alkylation of organonitrogen compounds catalyzed by methylene-linked bis-NHC half-sandwich ruthenium complexes. Organic and Biomolecular Chemistry, 2022, 20, 831-839.	2.8	11
125	Partial synthesis of sesquiterpene lactones: a route to 7,11-ene-13-hydroxyeudesmanolides. Journal of Organic Chemistry, 1991, 56, 3587-3591.	3.2	10
126	Differential Behaviour of Mycelial Growth of Several Botrytis cinerea Strains on either Patchoulol- or Globulol-amended Media. Journal of Phytopathology, 2001, 149, 113-118.	1.0	10

#	Article	IF	CITATIONS
127	Biotransformation of the fungistatic sesquiterpenoid isoprobotryan-9α-ol by Botrytis cinerea. Journal of Molecular Catalysis B: Enzymatic, 2002, 16, 249-253.	1.8	10
128	Biotransformation of the fungistatic compound (R)-(+)-1-(4′-chlorophenyl)propan-1-ol by Botrytis cinerea. Journal of Molecular Catalysis B: Enzymatic, 2003, 21, 267-271.	1.8	10
129	Studies on the biosynthesis of secobotryane skeleton. Tetrahedron, 2003, 59, 6267-6271.	1.9	10
130	Lipase-catalyzed resolution of 5-acetoxy-1,2-dihydroxy-1,2,3,4-tetrahydronaphthalene. Application to the synthesis of (+)-(3R,4S)-cis-4-hydroxy-6-deoxyscytalone, a metabolite isolated from Colletotrichum acutatum. Tetrahedron, 2009, 65, 3392-3396.	1.9	10
131	Asymmetric microbial reduction of ketones: absolute configuration of trans-4-ethyl-1-(1S-hydroxyethyl)cyclohexanol. Tetrahedron: Asymmetry, 2009, 20, 2666-2672.	1.8	10
132	Global Antifungal Profile Optimization of Chlorophenyl Derivatives against <i>Botrytis cinerea</i> and <i>Colletotrichum gloeosporioides</i> . Journal of Agricultural and Food Chemistry, 2009, 57, 4838-4843.	5.2	10
133	Biotransformation of clovane derivatives. Whole cell fungi mediated domino synthesis of rumphellclovane A. Organic and Biomolecular Chemistry, 2012, 10, 3315.	2.8	10
134	Phytotoxic Activity and Metabolism of Botrytis cinerea and Structure–Activity Relationships of Isocaryolane Derivatives. Journal of Natural Products, 2013, 76, 1016-1024.	3.0	10
135	Exploring mutasynthesis to increase structural diversity in the synthesis of highly oxygenated polyketide lactones. Organic and Biomolecular Chemistry, 2014, 12, 5304-5310.	2.8	10
136	Non-terpenoid biotransformations by Mucor species. Phytochemistry Reviews, 2015, 14, 745-764.	6.5	10
137	Structural and biosynthetic studies on eremophilenols related to the phytoalexin capsidiol, produced by Botrytis cinerea. Phytochemistry, 2018, 154, 10-18.	2.9	10
138	Neighbouring group participation on the bromination of methyl gibberellate: X-ray molecular structure of methyl 3,13-di-O-acetylgibberellate 16Î ² ,17-dibromide and ent-3α,13-diacetoxy-17-bromo-10Î ² ,16Î ² -dihydroxy-20-norgibberell-1-ene-7,19-dioic acid 19,10-lactone 7-methyl ester. Journal of the Chemical Society Perkin Transactions 1, 1988, , 105-110.	0.9	9
139	Biocatalysis Applied to the Synthesis of Pheromones. Current Organic Chemistry, 2007, 11, 693-705.	1.6	9
140	Metabolism of Antifungal Thiochroman-4-ones by <i>Trichoderma viride</i> and <i>Botrytis cinerea</i> . Journal of Natural Products, 2018, 81, 1036-1040.	3.0	9
141	Synthesis of Trichodermin Derivatives and Their Antimicrobial and Cytotoxic Activities. Molecules, 2019, 24, 3811.	3.8	9
142	Botrydial confers Botrytis cinerea the ability to antagonize soil and phyllospheric bacteria. Fungal Biology, 2020, 124, 54-64.	2.5	9
143	The inhibition of the fungus <i>Botrytis cinerea</i> by an eremophilane phytoalexin analogue. Journal of Chemical Research, 2004, 2004, 527-529.	1.3	8
144	Screening Study of Potential Lead Compounds for Natural Product-based Fungicides Against Phytophthora Species. Journal of Phytopathology, 2006, 154, 616-621.	1.0	8

#	Article	IF	CITATIONS
145	Hemisynthesis of New Triterpene Derivatives using Oxidation by CrO3 and NalO4â€(RuCl3, 3H2O). Synthetic Communications, 2007, 37, 1289-1299.	2.1	8
146	Enantioselective, chemoenzymatic synthesis, and absolute configuration of the antioxidant (â^')-gloeosporiol. Tetrahedron, 2010, 66, 8068-8075.	1.9	8
147	Metallocene catalyzed synthesis of fungistatic vicinal aminoalcohols under solvent free conditions. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 6820-6822.	2.2	8
148	Efficient O -Acylation of Alcohols and Phenol Using Cp2 TiCl as a Reaction Promoter. European Journal of Organic Chemistry, 2016, 2016, 3584-3591.	2.4	8
149	The formation of sesquiterpenoid presilphiperfolane and cameroonane metabolites in the Bcbot4 null mutant of Botrytis cinerea. Organic and Biomolecular Chemistry, 2017, 15, 5357-5363.	2.8	8
150	The sesquiterpene botrydial from Botrytis cinerea induces phosphatidic acid production in tomato cell suspensions. Planta, 2018, 247, 1001-1009.	3.2	8
151	Phenotypic Effects and Inhibition of Botrydial Biosynthesis Induced by Different Plant-Based Elicitors in Botrytis cinerea. Current Microbiology, 2018, 75, 431-440.	2.2	8
152	A new and efficient route to 3-(1,1-dimethylallyl)coumarins. Tetrahedron Letters, 1991, 32, 3209-3212.	1.4	7
153	Novel methoxyl and hydroxyl directed pinacol rearrangements of an isocaryolane sesquiterpenoid under Mitsunobu conditions. Tetrahedron Letters, 1999, 40, 6497-6498.	1.4	7
154	Studies on biotransformation of (±)-1-(4′-chlorophenyl)-2-phenylethanol. Tetrahedron: Asymmetry, 2003, 14, 3755-3760.	1.8	7
155	Asymmetric preparation of antifungal 1-(4′-chlorophenyl)-1-cyclopropyl methanol and 1-(4′-chlorophenyl)-2-phenylethanol. Study of the detoxification mechanism by Botrytis cinerea. Journal of Molecular Catalysis B: Enzymatic, 2011, 70, 61-66.	1.8	7
156	Impairment of botrydial production in Botrytis cinerea allows the isolation of undescribed polyketides and reveals new insights into the botcinins biosynthetic pathway. Phytochemistry, 2021, 183, 112627.	2.9	7
157	Configuration of 1,10-epoxyguaianolides: stereochemistry of 1,10-epoxy-8α-hydroxyachillin. Journal of the Chemical Society Perkin Transactions 1, 1987, , 1641-1644.	0.9	6
158	Partial synthesis of 7-β-hydroxyeudesmanolides. Tetrahedron Letters, 1990, 31, 5795-5798.	1.4	6
159	Nucleophilic 1,2 addition of bromine to electron deficient double bonds by perbromide reagents. Tetrahedron, 1994, 50, 6433-6440.	1.9	6
160	An autonomously replicating plasmid transformsBotrytis cinereato phleomycin resistance. FEMS Microbiology Letters, 1996, 137, 153-158.	1.8	6
161	The inhibition of the fungus Botrytis cinerea by some sesquiterpenoid daucanes. Journal of Chemical Research, 2004, 2004, 524-526.	1.3	6
162	Chemical genetics strategies for identification of molecular targets. Phytochemistry Reviews, 2013, 12, 895-914.	6.5	6

#	Article	IF	CITATIONS
163	Novel macrolide from wild strains of the phytopathogen Fungus Colletotrichum acutatum. Natural Product Communications, 2009, 4, 395-8.	0.5	6
164	The metabolism of the sesquiterpenoid 12-nor-8α-presilphiperfolan-9β-ol by the fungus Botrytis cinerea. Journal of Chemical Research, 2004, 2004, 468-470.	1.3	5
165	Filamentous Fungi (Botrytis cinerea). , 2011, , 257-277.		5
166	The stereochemistry of a rearrangement and fragmentation reaction of ring D of 13-hydroxygibberellins. Journal of the Chemical Society Perkin Transactions 1, 1988, , 1451.	0.9	4
167	Effect of Substituents on the Ring-Closing Metathesis Reaction in the Synthesis of Functionalized Nonanolactones. Synlett, 2008, 2008, 339-342.	1.8	4
168	Novel Macrolide from Wild Strains of the Phytopathogen Fungus <i>Colletotrichum Acutatum</i> . Natural Product Communications, 2009, 4, 1934578X0900400.	0.5	4
169	Fast HPLC analysis of omeprazole, 5-hydroxyomeprazole and omeprazole sulfone in liquid culture medium using a monolithic column for application in biotransformation studies with fungi. Journal of the Brazilian Chemical Society, 2011, 22, 1140-1149.	0.6	4
170	Stereoselective Synthesis and Absolute Configuration Determination of Xylariolide A. European Journal of Organic Chemistry, 2013, 2013, 2420-2427.	2.4	4
171	nor-Mevaldic acid surrogates as selective antifungal agent leads against Botrytis cinerea. Enantioselective preparation of 4-hydroxy-6-(1-phenylethoxy)tetrahydro-2H-pyran-2-one. Bioorganic and Medicinal Chemistry, 2015, 23, 3379-3387.	3.0	4
172	Recent approaches on the genomic analysis of the phytopathogenic fungus Colletotrichum spp Phytochemistry Reviews, 2020, 19, 589-601.	6.5	4
173	Botrytis species as biocatalysts. Phytochemistry Reviews, 2020, 19, 529-558.	6.5	4
174	Identification of the Sesquiterpene Cyclase Involved in the Biosynthesis of (+)-4-Epi-eremophil-9-en-11-ol Derivatives Isolated from <i>Botrytis cinerea</i> . ACS Chemical Biology, 2020, 15, 2775-2782.	3.4	4
175	Structural and biosynthetic studies of botrycinereic acid, a new cryptic metabolite from the fungus Botrytis cinerea. Bioorganic Chemistry, 2022, 127, 105979.	4.1	4
176	Mariolin, a germacranolide from Anacyclus radiatus. Phytochemistry, 1985, 24, 2447-2448.	2.9	3
177	Diastereoselective and enantioselective preparation of nor-mevaldic acid surrogates through desymmetrisation methodology. Enantioselective synthesis of (+) and (â^') nor-mevalonic lactones. Tetrahedron, 2015, 71, 7531-7538.	1.9	3
178	The synthesis of 3-hydroxy-2,4,8-trimethyldec-8-enolides and an approach to 3,4-dihydroxy-2,4,6,8-tetramethyldec-8-enolide. Organic and Biomolecular Chemistry, 2015, 13, 465-476.	2.8	3
179	The botryane sesquiterpenoid metabolism of the fungus <i>Botrytis cinerea</i> . Journal of Chemical Research, 2017, 41, 435-440.	1.3	3
180	Structures, Occurrences and Biosynthesis of 11,12,13-Tri-nor-Sesquiterpenes, an Intriguing Class of Bioactive Metabolites. Plants, 2022, 11, 769.	3.5	3

#	Article	IF	CITATIONS
181	Selective Synthesis of βâ€Hydroxy Nitroethanol Ethers by Alcoholysis of Oxiranes. Synthetic Communications, 2007, 37, 3589-3598.	2.1	2
182	Screening Study of Potential Lead Compounds for Natural Product Based Fungicides from Juniperus Lucayana. Natural Product Communications, 2008, 3, 1934578X0800300.	0.5	2
183	Asymmetric microbial conversion of (E)-2-benzylideneindan-1-one by the filamentous fungi Botrytis cinerea, Trichoderma viride, and Eutypa lata. Tetrahedron: Asymmetry, 2011, 22, 1653-1657.	1.8	2
184	Lathyrane Diterpenes from the Latex of Euphorbia laurifolia. Natural Product Communications, 2017, 12, 1934578X1701200.	0.5	2
185	Biocatalytic Preparation of Chloroindanol Derivatives. Antifungal Activity and Detoxification by the Phytopathogenic Fungus Botrytis cinerea. Plants, 2020, 9, 1648.	3.5	2
186	The complemented mutant ΔBcstc7, in the STC7 of Botrytis cinerea led to the characterization of 11,12,13-tri-nor-eremophilenols derivatives. Phytochemistry, 2022, 193, 113003.	2.9	2
187	Secondary Metabolites Isolated from Colletrotrichum Species. ChemInform, 2003, 34, no.	0.0	1
188	Antifungal and Cytotoxic Assessment of Lapachol Derivatives Produced by Fungal Biotransformation. Natural Product Communications, 2016, 11, 1934578X1601100.	0.5	1
189	Biotransformations by Colletotrichum Species. ChemInform, 2003, 34, no.	0.0	0
190	Editorial [Hot Topic: Bioorganic Chemistry (Guest Editor: I. G. Collado)]. Current Organic Chemistry, 2007, 11, 655-655.	1.6	0
191	Editorial [Hot topic: Biotechnology and Bioorganic of Fungi (Guest Editor: I. G. Collado)]. Current Organic Chemistry, 2009, 13, 1136-1136.	1.6	0
192	Botcinolide/Botcinin: Asymmetric Synthesis of the Key Fragments. Natural Product Communications, 2011, 6, 1934578X1100600.	0.5	0
193	Synthesis, Fungitoxic Activity against Botrytis cinerea and Phytotoxicity of Alkoxyclovanols and Alkoxyisocaryolanols. Journal of Fungi (Basel, Switzerland), 2021, 7, 1079.	3.5	0
194	An autonomously replicating plasmid transforms Botrytis cinerea to phleomycin resistance. FEMS Microbiology Letters, 1996, 137, 153-158.	1.8	0