Cassandra Terry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6516710/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	mGlu5 receptors and cellular prion protein mediate amyloid-β-facilitated synaptic long-term depression in vivo. Nature Communications, 2014, 5, 3374.	12.8	157
2	Amyloid-β nanotubes are associated with prion protein-dependent synaptotoxicity. Nature Communications, 2013, 4, 2416.	12.8	112
3	Surface architecture of endospores of the <i>Bacillus cereus/anthracis/thuringiensis</i> family at the subnanometer scale. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16014-16019.	7.1	67
4	<i>Ex vivo</i> mammalian prions are formed of paired double helical prion protein fibrils. Open Biology, 2016, 6, 160035.	3.6	55
5	A novel and rapid method for obtaining high titre intact prion strains from mammalian brain. Scientific Reports, 2015, 5, 10062.	3.3	51
6	Structural features distinguishing infectious ex vivo mammalian prions from non-infectious fibrillar assemblies generated in vitro. Scientific Reports, 2019, 9, 376.	3.3	37
7	Molecular tiling on the surface of a bacterial spore – the exosporium of the <i>Bacillus anthracis/cereus/thuringiensis</i> group. Molecular Microbiology, 2017, 104, 539-552.	2.5	36
8	Recent Advances in Understanding Mammalian Prion Structure: A Mini Review. Frontiers in Molecular Neuroscience, 2019, 12, 169.	2.9	29
9	Highly infectious prions are not directly neurotoxic. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23815-23822.	7.1	25
10	Ni-chelate-affinity purification and crystallization of the yeast mitochondrial F1-ATPase. Protein Expression and Purification, 2004, 37, 479-485.	1.3	24
11	N-terminal Domain of Prion Protein Directs Its Oligomeric Association. Journal of Biological Chemistry, 2014, 289, 25497-25508.	3.4	20
12	YwdL in Bacillus cereus: Its Role in Germination and Exosporium Structure. PLoS ONE, 2011, 6, e23801.	2.5	18
13	Soluble AÎ ² aggregates can inhibit prion propagation. Open Biology, 2017, 7, 170158.	3.6	11
14	Crystallization and preliminary crystallographic studies of the mitochondrial F1-ATPase from the yeastSaccharomyces cerevisiae. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 1441-1444.	2.5	8
15	Factors That Contribute to hIAPP Amyloidosis in Type 2 Diabetes Mellitus. Life, 2022, 12, 583.	2.4	7
16	Insights from nature: A review of natural compounds that target protein misfolding in vivo. Current Research in Biotechnology, 2020, 2, 131-144.	3.7	6
17	Linking hIAPP misfolding and aggregation with type 2 diabetes mellitus: a structural perspective. Bioscience Reports, 2022, 42, .	2.4	2
18	Prion 2016 Poster Abstracts. Prion, 2016, 10, S37-S127.	1.8	1

2