Gennady Chuev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6514992/publications.pdf

Version: 2024-02-01

59	1,255	17 h-index	34
papers	citations		g-index
60	60	60	1132
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	NWChem: Past, present, and future. Journal of Chemical Physics, 2020, 152, 184102.	3.0	425
2	Improved estimates for hydration free energy obtained by the reference interaction site model. Chemical Physics Letters, 2007, 448, 198-202.	2.6	94
3	An Accurate Prediction of Hydration Free Energies by Combination of Molecular Integral Equations Theory with Structural Descriptors. Journal of Physical Chemistry B, 2010, 114, 12068-12079.	2.6	74
4	Wavelet algorithm for solving integral equations of molecular liquids. A test for the reference interaction site model. Journal of Computational Chemistry, 2004, 25, 1369-1377.	3.3	45
5	An operational Haar wavelet method for solving fractional Volterra integral equations. International Journal of Applied Mathematics and Computer Science, 2011, 21, 535-547.	1.5	39
6	Hydration of ionic species studied by the reference interaction site model with a repulsive bridge correction. Journal of Computational Chemistry, 2008, 29, 2406-2415.	3.3	38
7	Integral Equation Theory of Molecular Solvation Coupled with Quantum Mechanical/Molecular Mechanics Method in NWChem Package. Journal of Chemical Theory and Computation, 2012, 8, 1246-1254.	5.3	31
8	Wavelet treatment of structure and thermodynamics of simple liquids. Journal of Chemical Physics, 2004, 120, 1191-1196.	3.0	29
9	Reference interaction site model study of self-aggregating cyanine dyes. Journal of Chemical Physics, 2009, 131, 074503.	3.0	29
10	Hydration structure of osmolyte TMAO: concentration/pressure-induced response. New Journal of Chemistry, 2017, 41, 1219-1228.	2.8	28
11	Hydration of Hydrophobic Solutes Treated by the Fundamental Measure Approach. Journal of Physical Chemistry B, 2006, 110, 18496-18503.	2.6	25
12	A structured low-rank wavelet solver for the Ornstein-Zernike integral equation. Computing (Vienna/New York), 2007, 80, 47-73.	4.8	21
13	Comparative study of electrostatic solvent response by RISM and PCM methods. International Journal of Quantum Chemistry, 2007, 107, 265-274.	2.0	20
14	In Silico Screening of Bioactive and Biomimetic Solutes Using Molecular Integral Equation Theory. Current Pharmaceutical Design, 2011, 17, 1695-1708.	1.9	20
15	Features of local ordering of biocompatible ionic liquids: The case of choline-based amino acid ionic liquids. Journal of Molecular Liquids, 2019, 296, 112081.	4.9	20
16	Local ion hydration structure in aqueous imidazolium-based ionic liquids: The effects of concentration and anion nature. Journal of Molecular Liquids, 2017, 247, 100-108.	4.9	19
17	Extraction of atom–atom bridge and direct correlation functions from molecular simulations: A test for ambient water. Chemical Physics Letters, 2013, 561-562, 175-178.	2.6	18
18	Hydration features of the neurotransmitter acetylcholine. Journal of Molecular Liquids, 2020, 304, 112757.	4.9	17

#	Article	IF	CITATIONS
19	Wavelet treatment of radial distribution functions of solutes. Physical Review E, 2003, 68, 027702.	2.1	16
20	Density functional method based on wavelets for quantum classical systems. International Journal of Quantum Chemistry, 2004, 100, 539-547.	2.0	14
21	Nature of the metal–nonmetal transition in metal–ammonia solutions. I. Solvated electrons at low metal concentrations. Journal of Chemical Physics, 2007, 127, 244501.	3.0	14
22	A Polaron Model for Electron Transfer in Globular Proteins. Journal of Theoretical Biology, 1993, 163, 51-60.	1.7	13
23	Density functional study of polarons and bipolarons in polar liquids. Physical Review B, 2003, 67, .	3.2	13
24	Wavelet method for solving integral equations of simple liquids. Journal of Molecular Liquids, 2005, 120, 159-162.	4.9	13
25	3D WAVELET TREATMENT OF SOLVATED BIPOLARON AND POLARON. Journal of Theoretical and Computational Chemistry, 2005, 04, 751-767.	1.8	12
26	Nature of metal–nonmetal transition in metal–ammonia solutions. II. From uniform metallic state to inhomogeneous electronic microstructure. Journal of Chemical Physics, 2008, 128, 144503.	3.0	12
27	Extraction of site–site bridge functions and effective pair potentials from simulations of polar molecular liquids. Journal of Computational Chemistry, 2014, 35, 1010-1023.	3.3	12
28	Site density models of inhomogeneous classical molecular liquids. Journal of Statistical Mechanics: Theory and Experiment, 2018, 2018, 093201.	2.3	12
29	Mean-field theory of an electron solvated in molten salts. Journal of Chemical Physics, 2000, 112, 4707-4715.	3.0	11
30	Triangular functions for operational matrix of nonlinear fractional Volterra integral equations. Journal of Applied Mathematics and Computing, 2015, 49, 213-232.	2.5	11
31	Chemical bond effects in classical site density functional theory of inhomogeneous molecular liquids. Journal of Chemical Physics, 2020, 152, 041101.	3.0	10
32	Density functional theory of bipolarons in polar liquids. Chemical Physics Letters, 2003, 368, 53-58.	2.6	9
33	Superexchange coupling and electron transfer in globular proteins via polaron excitations. Journal of Biological Physics, 2000, 26, 173-184.	1.5	8
34	Mean-field treatment of polarons in strong electrolytes. Physical Review E, 2001, 63, 061204.	2.1	8
35	Wavelet treatment of the intrachain correlation functions of homopolymers in dilute solutions. Physical Review E, 2004, 70, 051803.	2.1	8
36	Molecular insight on ion hydration and association in aqueous choline chloride solutions. Journal of Molecular Liquids, 2020, 313, 113563.	4.9	8

#	Article	IF	Citations
37	Herzfeld instability versus Mott transition in metal–ammonia solutions. Comptes Rendus Physique, 2007, 8, 449-455.	0.9	7
38	Renormalized site density functional theory. Journal of Statistical Mechanics: Theory and Experiment, 2021, 2021, 033205.	2.3	7
39	Renormalized site density functional theory for models of ion hydration. Journal of Chemical Physics, 2021, 155, 064501.	3.0	6
40	CDFTPY: A python package for performing classical density functional theory calculations for molecular liquids. Computer Physics Communications, 2022, 276, 108338.	7. 5	6
41	Statistical theory of a solvated electron in an electrolyte. Journal of Experimental and Theoretical Physics, 1999, 88, 807-814.	0.9	5
42	Bipolarons in a KCl melt. Journal of Experimental and Theoretical Physics, 2000, 91, 983-990.	0.9	5
43	Comment on "Model of saturated lithium ammonia as a single-component liquid metal―[J. Chem. Phys. 124, 074702 (2006)]. Journal of Chemical Physics, 2008, 128, 027101.	3.0	5
44	Site Density Functional Theory and Structural Bioinformatics Analysis of the SARS-CoV Spike Protein and hACE2 Complex. Molecules, 2022, 27, 799.	3.8	5
45	Quantum mechanics of solvated complexes: A test for positronium. International Journal of Quantum Chemistry, 2002, 88, 634-641.	2.0	4
46	Dispersion forces between solvated electrons. Journal of Chemical Physics, 2010, 132, 144504.	3.0	2
47	Non-metal-to-metal transition driven by van der Waals forces in an interacting polaronic gas. New Journal of Physics, 2010, 12, 023030.	2.9	2
48	Superexchange coupling and electron transfer in globular proteins via polaron excitations. Journal of Biological Physics, 1999, 24, 245-256.	1.5	1
49	A probabilistic method for calculating the energy of hydrophobic interactions. Biophysics (Russian) Tj ETQq $1\ 1\ 0$.784314 rg	gBŢ /Overloc
50	Electron–electron attraction caused by dispersion forces in metal–ammonia solutions. Chemical Physics Letters, 2013, 556, 138-141.	2.6	1
51	Exact site–site bridge functions for dielectric consistent reference interaction site model: A test for ambient water. Journal of Molecular Liquids, 2015, 205, 67-73.	4.9	1
52	Hybrid Functions of Lagrange Polynomials and Block-Pulse Functions for Solving Integro-partial Differential Equations. Iranian Journal of Science and Technology, Transaction A: Science, 2018, , 1.	1.5	1
53	ELECTRON STATES LOCALIZED ON NEUTRAL CLUSTERS CONSISTING OF METAL ATOM AND POLAR MOLECULES. , 1999, , 138-157.		0
54	Modified model of self-consistent field for an electron solvated in a polar liquid. Journal of Experimental and Theoretical Physics, 2003, 97, 566-572.	0.9	0

#	Article	lF	CITATIONS
55	Estimation of hydrophobic effects using the fundamental measure theory. Biophysics (Russian) Tj ETQq $1\ 1\ 0.784$	1314 ₋ 7gBT	Oyerlock 1
56	A universal bridge functional for infinitely diluted solutions. Russian Journal of Physical Chemistry A, 2013, 87, 1598-1599.	0.6	0
57	Hybrid Functions of Lagrange Polynomials and Block-Pulse Functions for Solving Integro-partial Differential Equations. Iranian Journal of Science and Technology, Transaction A: Science, 2018, 42, 2021-2028.	1.5	0
58	CLUSTERIZATION AND CAVITY FORMATION OF INERT GASES ON AN EXCESS ELECTRON. , 1998, , 111-126.		0
59	INTRODUCTION — PHYSICS OF CLUSTERS CLUSTERS IN PLASMA AND GASES. , 1999, , 1-4.		0