
Hsien-Hung Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6514820/publications.pdf Version: 2024-02-01

HSIEN-HUNC WEL

#	Article	IF	CITATIONS
1	Anisotropic stresslet and rheology of stick–slip Janus spheres. Journal of Fluid Mechanics, 2022, 945, .	3.4	2
2	AC electrohydrodynamic Landau–Squire flows around a conducting nanotip. Journal of Fluid Mechanics, 2021, 925, .	3.4	0
3	Coupled Faxen relations for non-uniform slip Janus spheres. Physics of Fluids, 2021, 33, .	4.0	5
4	Re-entrant history force transition for stick–slip Janus swimmers: mixed Basset and slip-induced memory effects. Journal of Fluid Mechanics, 2020, 882, .	3.4	5
5	Atypical non-Basset particle dynamics due to hydrodynamic slip. Physics of Fluids, 2020, 32, .	4.0	11
6	Slipping moving contact lines: critical roles of deÂGennes's â€~foot' in dynamic wetting. Journal of Fluid Mechanics, 2019, 873, 110-150.	3.4	3
7	The Basset problem with dynamic slip: slip-induced memory effect and slip–stickÂtransition. Journal of Fluid Mechanics, 2019, 866, 431-449.	3.4	15
8	History hydrodynamic torque transitions in oscillatory spinning of stick-slip Janus particles. AIP Advances, 2019, 9, 125113.	1.3	2
9	Letter: New boundary layer structures due to strong wall slippage. Physics of Fluids, 2018, 30, 121702.	4.0	10
10	Marangoni-enhanced capillary wetting in surfactant-driven superspreading. Journal of Fluid Mechanics, 2018, 855, 181-209.	3.4	16
11	Slip-enhanced drop formation in a liquid falling down a vertical fibre. Journal of Fluid Mechanics, 2017, 820, 42-60.	3.4	19
12	Superdiffusion in dispersions of active colloids driven by an external field and their sedimentation equilibrium. Physical Review E, 2016, 93, 042611.	2.1	8
13	Conformational transitions of single polymer adsorption in poor solvent: Wetting transition due to molecular confinement induced line tension. Physical Review E, 2016, 94, 012501.	2.1	5
14	Slip-induced suppression of Marangoni film thickening in surfactant-retarded Landau–Levich–Bretherton flows. Journal of Fluid Mechanics, 2015, 781, 578-594.	3.4	5
15	Breakdown of the Bretherton law due to wallÂslippage. Journal of Fluid Mechanics, 2014, 741, 200-227.	3.4	9
16	Probing conformational transitions of polymer chains by microrheology. Polymer, 2014, 55, 3168-3177.	3.8	7
17	Speeding up thermocapillary migration of a confined bubble by wall slip. Journal of Fluid Mechanics, 2014, 746, 31-52.	3.4	10
18	Drastic Changes in Interfacial Hydrodynamics due to Wall Slippage: Slip-Intensified Film Thinning, Drop Spreading, and Capillary Instability. Physical Review Letters, 2013, 111, 136001.	7.8	22

HSIEN-HUNG WEI

#	Article	IF	CITATIONS
19	Electrophoretic stretching of tethered polymer chains by travelling-wave electric fields: tunable stretching, expedited coil–stretch transition, and a new paradigm of dynamic molecular probing. Soft Matter, 2012, 8, 1977-1990.	2.7	5
20	Roles of solution conductivity mismatch in transient current and fluid transport in electrolyte displacement by electro-osmotic flow. Microfluidics and Nanofluidics, 2011, 10, 337-353.	2.2	8
21	Self-propulsion and dispersion of reactive colloids due to entropic anisotropy. Journal of Fluid Mechanics, 2010, 657, 64-88.	3.4	5
22	Dynamic particle trapping, release, and sorting by microvortices on a substrate. Physical Review E, 2010, 82, 026308.	2.1	26
23	Entropic trap, surface-mediated combing, and assembly of DNA molecules within submicrometer interfacial confinement. Physical Review E, 2009, 79, 021901.	2.1	9
24	Transient currents in electrolyte displacement by asymmetric electro-osmosis and determination of surface zeta potentials of composite microchannels. Applied Physics Letters, 2008, 92, 244102.	3.3	6
25	Stretching DNA with electric fields beneath submicron interfacial constriction created by a closely fitting microdroplet in a microchannel. Applied Physics Letters, 2008, 93, .	3.3	8
26	Role of base flows on surfactant-driven interfacial instabilities. Physical Review E, 2007, 75, 036306.	2.1	12
27	Linear stability of a surfactant-laden annular film in a time-periodic pressure-driven flow through a capillary. Journal of Colloid and Interface Science, 2005, 285, 769-780.	9.4	11
28	Shear-modulated electroosmotic flow on a patterned charged surface. Journal of Colloid and Interface Science, 2005, 284, 742-752.	9.4	9
29	Effect of surfactant on the long-wave instability of a shear-imposed liquid flow down an inclined plane. Physics of Fluids, 2005, 17, 012103.	4.0	57
30	Marangoni destabilization on a core-annular film flow due to the presence of surfactant. Physics of Fluids, 2005, 17, 027101.	4.0	15
31	Thermocapillary instability of core-annular flows. Physics of Fluids, 2005, 17, 102102.	4.0	4
32	Stability of a viscoelastic falling film with surfactant subjected to an interfacial shear. Physical Review E, 2005, 71, 066306.	2.1	25
33	On the flow-induced Marangoni instability due to the presence of surfactant. Journal of Fluid Mechanics, 2005, 544, 173.	3.4	28
34	The effects of insoluble surfactants on the linear stability of a core–annular flow. Journal of Fluid Mechanics, 2005, 541, 115.	3.4	25