Elizabeth Vincan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6514549/publications.pdf

Version: 2024-02-01

257357 223716 3,247 47 24 46 citations g-index h-index papers 49 49 49 5436 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Air-Liquid-Interface Differentiated Human Nose Epithelium: A Robust Primary Tissue Culture Model of SARS-CoV-2 Infection. International Journal of Molecular Sciences, 2022, 23, 835.	1.8	15
2	Organoid Models of SARS-CoV-2 Infection: What Have We Learned about COVID-19?. Organoids, 2022, 1, 2-27.	1.8	12
3	Captopril, a Renin–Angiotensin System Inhibitor, Attenuates Tumour Progression in the Regenerating Liver Following Partial Hepatectomy. International Journal of Molecular Sciences, 2022, 23, 5281.	1.8	5
4	Captopril, a Renin-Angiotensin System Inhibitor, Attenuates Features of Tumor Invasion and Down-Regulates C-Myc Expression in a Mouse Model of Colorectal Cancer Liver Metastasis. Cancers, 2021, 13, 2734.	1.7	12
5	Clinical stage drugs targeting inhibitor of apoptosis proteins purge episomal Hepatitis B viral genome in preclinical models. Cell Death and Disease, 2021, 12, 641.	2.7	4
6	Investigating virus–host cell interactions: Comparative binding forces between hepatitis C virus-like particles and host cell receptors in 2D and 3D cell culture models. Journal of Colloid and Interface Science, 2021, 592, 371-384.	5.0	15
7	Frizzled7 Activates Î ² -Catenin-Dependent and Î ² -Catenin-Independent Wnt Signalling Pathways During Developmental Morphogenesis: Implications for Therapeutic Targeting in Colorectal Cancer. Handbook of Experimental Pharmacology, 2021, 269, 251-277.	0.9	3
8	Targeting Wnt Signaling for the Treatment of Gastric Cancer. International Journal of Molecular Sciences, 2020, 21, 3927.	1.8	46
9	The Hepatitis B Virus Pre-Core Protein p22 Activates Wnt Signaling. Cancers, 2020, 12, 1435.	1.7	10
10	The Function of Lgr5+ Cells in the Gastric Antrum Does Not Require Fzd7 or Myc In Vivo. Biomedicines, 2019, 7, 50.	1.4	2
11	HBV-related hepatocarcinogenesis: the role of signalling pathways and innovative ex vivo research models. BMC Cancer, 2019, 19, 707.	1.1	68
12	Wnt Signaling in Cancer: Not a Binary ON:OFF Switch. Cancer Research, 2019, 79, 5901-5906.	0.4	50
13	<i>Frizzled-7</i> Is Required for Wnt Signaling in Gastric Tumors with and Without <i>Apc</i> Mutations. Cancer Research, 2019, 79, 970-981.	0.4	78
14	The Central Role of Wnt Signaling and Organoid Technology in Personalizing Anticancer Therapy. Progress in Molecular Biology and Translational Science, 2018, 153, 299-319.	0.9	7
15	PI3K activation in neural stem cells drives tumorigenesis which can be ameliorated by targeting the cAMP response element binding protein. Neuro-Oncology, 2018, 20, 1344-1355.	0.6	23
16	Wnt is necessary for mesenchymal to epithelial transition in colorectal cancer cells. Developmental Dynamics, 2018, 247, 521-530.	0.8	36
17	Wnt Signalling in Gastrointestinal Epithelial Stem Cells. Genes, 2018, 9, 178.	1.0	64
18	Winding back Wnt signalling: potential therapeutic targets for treating gastric cancers. British Journal of Pharmacology, 2017, 174, 4666-4683.	2.7	34

#	Article	IF	Citations
19	Loss of the Wnt receptor Frizzled7 in the gastric epithelium is deleterious and triggers rapid repopulation in vivo. DMM Disease Models and Mechanisms, 2017, 10, 971-980.	1.2	20
20	Frizzled7: A Promising Achilles' Heel for Targeting the Wnt Receptor Complex to Treat Cancer. Cancers, 2016, 8, 50.	1.7	73
21	Isolation and Culture of Adult Intestinal, Gastric, and Liver Organoids for Cre-recombinase-Mediated Gene Deletion. Methods in Molecular Biology, 2016, 1576, 123-133.	0.4	12
22	Stomach-Specific Activation of Oncogenic KRAS and STAT3-Dependent Inflammation Cooperatively Promote Gastric Tumorigenesis in a Preclinical Model. Cancer Research, 2016, 76, 2277-2287.	0.4	33
23	Frizzled7 Functions as a Wnt Receptor in Intestinal Epithelial Lgr5+ Stem Cells. Stem Cell Reports, 2015, 4, 759-767.	2.3	114
24	Partial inhibition of gp130-Jak-Stat3 signaling prevents Wnt–β-catenin–mediated intestinal tumor growth and regeneration. Science Signaling, 2014, 7, ra92.	1.6	68
25	HBV-related hepatocellular carcinoma: the role of integration, viral proteins and miRNA. Future Virology, 2012, 7, 1237-1249.	0.9	1
26	The Wnt signaling pathways and cell adhesion. Frontiers in Bioscience - Landmark, 2012, 17, 784.	3.0	71
27	Myb Controls Intestinal Stem Cell Genes and Self-Renewal. Stem Cells, 2011, 29, 2042-2050.	1.4	52
28	PHLDA1 Expression Marks the Putative Epithelial Stem Cells and Contributes to Intestinal Tumorigenesis. Cancer Research, 2011, 71, 3709-3719.	0.4	86
29	Intestinal epithelial-specific PTEN inactivation results in tumor formation. American Journal of Physiology - Renal Physiology, 2011, 301, G856-G864.	1.6	29
30	Variable FZD7 expression in colorectal cancers indicates regulation by the tumour microenvironment. Developmental Dynamics, 2010, 239, 311-317.	0.8	24
31	The upstream components of the Wnt signalling pathway in the dynamic EMT and MET associated with colorectal cancer progression. Clinical and Experimental Metastasis, 2008, 25, 657-663.	1.7	173
32	A reciprocal repression between ZEB1 and members of the miRâ€200 family promotes EMT and invasion in cancer cells. EMBO Reports, 2008, 9, 582-589.	2.0	1,567
33	Analysis of Wnt/FZD-Mediated Signalling in a Cell Line Model of Colorectal Cancer Morphogenesis. Methods in Molecular Biology, 2008, 468, 263-273.	0.4	6
34	Oncogenic Properties of HIV-Tat in Colorectal Cancer Cells. Current HIV Research, 2007, 5, 403-409.	0.2	16
35	A Human Three-Dimensional Cell Line Model Allows the Study of Dynamic and Reversible Epithelial-Mesenchymal and Mesenchymal-Epithelial Transition That Underpins Colorectal Carcinogenesis. Cells Tissues Organs, 2007, 185, 20-28.	1.3	34
36	Frizzled7 dictates embryonic morphogenesis: implications for colorectal cancer progression. Frontiers in Bioscience - Landmark, 2007, 12, 4558.	3.0	14

#	Article	IF	CITATIONS
37	Frizzled-7 receptor ectodomain expression in a colon cancer cell line induces morphological change and attenuates tumor growth. Differentiation, 2005, 73, 142-153.	1.0	52
38	Colony-Stimulating Factor-1 Promotes Clonogenic Growth of Normal Murine Colonic Crypt Epithelial CellsIn Vitro. Journal of Interferon and Cytokine Research, 2004, 24, 416-427.	0.5	31
39	Frizzled/WNT signalling: the insidious promoter of tumour growth and progression. Frontiers in Bioscience - Landmark, 2004, 9, 1023.	3.0	45
40	Functional Abnormalities in Protein Tyrosine Phosphatase $\hat{l}\mu$ -Deficient Macrophages. Biochemical and Biophysical Research Communications, 2001, 286, 184-188.	1.0	44
41	Expression of Wnt genes in human colon cancers. Cancer Letters, 2001, 166, 185-191.	3.2	39
42	ld2 Is a Target of the \hat{I}^2 -Catenin/T Cell Factor Pathway in Colon Carcinoma. Journal of Biological Chemistry, 2001, 276, 45113-45119.	1.6	123
43	Enhanced negative chronotropy by inhibitory receptors in transgenic heart overexpressing \hat{l}^22 -adrenoceptors. Journal of the Autonomic Nervous System, 2000, 79, 108-116.	1.9	3
44	Lipopolysaccharide-induced priming of the human neutrophil is not associated with a change in phosphotyrosine phosphatase activity. International Journal of Biochemistry and Cell Biology, 1999, 31, 585-593.	1.2	8
45	Reduction in Gh protein expression is associated with cytodifferentiation of vascular smooth muscle cells. Molecular and Cellular Biochemistry, 1996, 157, 107-10.	1.4	7
46	Reduction in Gh protein expression is associated with cytodifferentiation of vascular smooth muscle cells., 1996,, 107-110.		1
47	Isolation of neonatal cardiomyocytes reduces the expression of the GTP-binding protein, Gh. Journal of Molecular and Cellular Cardiology, 1995, 27, 2393-2396.	0.9	13