
Suryaram Gummuluru

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6514262/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Virus-Mimicking Polymer Nanoparticles Targeting CD169 ⁺ Macrophages as Long-Acting Nanocarriers for Combination Antiretrovirals. ACS Applied Materials & Interfaces, 2022, 14, 2488-2500.	8.0	12
2	Characterizing Lipid oated Mesoporous Silica Nanoparticles as CD169â€Binding Delivery System for Rilpivirine and Cabotegravir. Advanced NanoBiomed Research, 2022, 2, .	3.6	3
3	Expression of HIV-1 Intron-Containing RNA in Microglia Induces Inflammatory Responses. Journal of Virology, 2021, 95, .	3.4	15
4	Novel ELISA Protocol Links Pre-Existing SARS-CoV-2 Reactive Antibodies With Endemic Coronavirus Immunity and Age and Reveals Improved Serologic Identification of Acute COVID-19 via Multi-Parameter Detection. Frontiers in Immunology, 2021, 12, 614676.	4.8	13
5	CD209L/L-SIGN and CD209/DC-SIGN Act as Receptors for SARS-CoV-2. ACS Central Science, 2021, 7, 1156-1165.	11.3	165
6	Stiffness of HIVâ€1 Mimicking Polymer Nanoparticles Modulates Gangliosideâ€Mediated Cellular Uptake and Trafficking. Advanced Science, 2020, 7, 2000649.	11.2	26
7	HIV-1 Persistence and Chronic Induction of Innate Immune Responses in Macrophages. Viruses, 2020, 12, 711.	3.3	17
8	Unique Roles for Streptococcus pneumoniae Phosphodiesterase 2 in Cyclic di-AMP Catabolism and Macrophage Responses. Frontiers in Immunology, 2020, 11, 554.	4.8	8
9	Illuminating the Role of Vpr in HIV Infection of Myeloid Cells. Frontiers in Immunology, 2019, 10, 1606.	4.8	17
10	Strength of T cell signaling regulates HIV-1 replication and establishment of latency. PLoS Pathogens, 2019, 15, e1007802.	4.7	20
11	TIM-mediated inhibition of HIV-1 release is antagonized by Nef but potentiated by SERINC proteins. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5705-5714.	7.1	28
12	Plasmon-Enhanced Pan-Microbial Pathogen Inactivation in the Cavitation Regime: Selectivity Without Targeting. ACS Applied Nano Materials, 2019, 2, 2548-2558.	5.0	6
13	Femtosecond photonic viral inactivation probed using solid-state nanopores. Nano Futures, 2018, 2, 045005.	2.2	12
14	HIV-1 replicates and persists in vaginal epithelial dendritic cells. Journal of Clinical Investigation, 2018, 128, 3439-3444.	8.2	56
15	Membrane-wrapped nanoparticles probe divergent roles of GM3 and phosphatidylserine in lipid-mediated viral entry pathways. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9041-E9050.	7.1	38
16	HIV-1 intron-containing RNA expression induces innate immune activation and T cell dysfunction. Nature Communications, 2018, 9, 3450.	12.8	59
17	Virion-Associated Vpr Alleviates a Postintegration Block to HIV-1 Infection of Dendritic Cells. Journal of Virology, 2017, 91, .	3.4	30
18	Spontaneous Mutation at Amino Acid 544 of the Ebola Virus Glycoprotein Potentiates Virus Entry and Selection in Tissue Culture. Journal of Virology, 2017, 91, .	3.4	24

Suryaram Gummuluru

#	Article	IF	CITATIONS
19	Membrane Fluidity Sensing on the Single Virus Particle Level with Plasmonic Nanoparticle Transducers. ACS Sensors, 2017, 2, 1415-1423.	7.8	6
20	Plasmonic Enhancement of Selective Photonic Virus Inactivation. Scientific Reports, 2017, 7, 11951.	3.3	25
21	Interferon-Inducible CD169/Siglec1 Attenuates Anti-HIV-1 Effects of Alpha Interferon. Journal of Virology, 2017, 91, .	3.4	49
22	The RNA uridyltransferase Zcchc6 is expressed in macrophages and impacts innate immune responses. PLoS ONE, 2017, 12, e0179797.	2.5	12
23	Access of HIV-2 to CD169-dependent dendritic cell-mediated trans infection pathway is attenuated. Virology, 2016, 497, 328-336.	2.4	14
24	Functional Interplay Between Murine Leukemia Virus Glycogag, Serinc5, and Surface Glycoprotein Governs Virus Entry, with Opposite Effects on Gammaretroviral and Ebolavirus Glycoproteins. MBio, 2016, 7, .	4.1	49
25	Lipid-Mediated Targeting with Membrane-Wrapped Nanoparticles in the Presence of Corona Formation. ACS Nano, 2016, 10, 1189-1200.	14.6	62
26	CD169-Mediated Trafficking of HIV to Plasma Membrane Invaginations in Dendritic Cells Attenuates Efficacy of Anti-gp120 Broadly Neutralizing Antibodies. PLoS Pathogens, 2015, 11, e1004751.	4.7	60
27	Dressing up Nanoparticles: A Membrane Wrap to Induce Formation of the Virological Synapse. ACS Nano, 2015, 9, 4182-4192.	14.6	26
28	A mechanistic overview of dendritic cell-mediated HIV-1 <i>trans</i> infection: the story so far. Future Virology, 2015, 10, 257-269.	1.8	23
29	Quantifying Lipid Contents in Enveloped Virus Particles with Plasmonic Nanoparticles. Small, 2015, 11, 1592-1602.	10.0	13
30	CD169-Dependent Cell-Associated HIV-1 Transmission: A Driver of Virus Dissemination. Journal of Infectious Diseases, 2014, 210, S641-S647.	4.0	31
31	Glycosphingolipid-functionalized nanoparticles recapitulate CD169-dependent HIV-1 uptake and trafficking in dendritic cells. Nature Communications, 2014, 5, 4136.	12.8	59
32	Hsp70–Bag3 Interactions Regulate Cancer-Related Signaling Networks. Cancer Research, 2014, 74, 4731-4740.	0.9	141
33	Virus Particle Release from Glycosphingolipid-Enriched Microdomains Is Essential for Dendritic Cell-Mediated Capture and Transfer of HIV-1 and Henipavirus. Journal of Virology, 2014, 88, 8813-8825.	3.4	38
34	Interleukin 2-inducible T cell kinase (ITK) facilitates efficient egress of HIV-1 by coordinating Gag distribution and actin organization. Virology, 2013, 436, 235-243.	2.4	10
35	Interferon-Inducible Mechanism of Dendritic Cell-Mediated HIV-1 Dissemination Is Dependent on Siglec-1/CD169. PLoS Pathogens, 2013, 9, e1003291.	4.7	159
36	Transmembrane Domain Membrane Proximal External Region but Not Surface Unit–Directed Broadly Neutralizing HIV-1 Antibodies Can Restrict Dendritic Cell–Mediated HIV-1 Trans-infection. Journal of Infectious Diseases, 2012, 205, 1248-1257.	4.0	38

Suryaram Gummuluru

#	Article	IF	CITATIONS
37	Host-Pathogen Interactions of Retroviruses. Molecular Biology International, 2012, 2012, 1-4.	1.7	1
38	Role of Glycosphingolipids in Dendritic Cell-Mediated HIV-1 Trans-infection. Advances in Experimental Medicine and Biology, 2012, 762, 131-153.	1.6	24
39	HIV-1 incorporation of host-cell–derived glycosphingolipid GM3 allows for capture by mature dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7475-7480.	7.1	109
40	PPARÎ ³ and LXR Signaling Inhibit Dendritic Cell-Mediated HIV-1 Capture and trans-Infection. PLoS Pathogens, 2010, 6, e1000981.	4.7	73
41	Glycosphingolipid Composition of Human Immunodeficiency Virus Type 1 (HIV-1) Particles Is a Crucial Determinant for Dendritic Cell-Mediated HIV-1 <i>trans</i> -Infection. Journal of Virology, 2009, 83, 3496-3506.	3.4	62
42	Capture and transfer of HIV-1 particles by mature dendritic cells converges with the exosome-dissemination pathway. Blood, 2009, 113, 2732-2741.	1.4	208
43	Deamination-Independent Inhibition of Hepatitis B Virus Reverse Transcription by APOBEC3G. Journal of Virology, 2007, 81, 4465-4472.	3.4	147
44	Immature dendritic cell-derived exosomes can mediate HIV-1 trans infection. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 738-743.	7.1	268
45	Binding of Human Immunodeficiency Virus Type 1 to Immature Dendritic Cells Can Occur Independently of DC-SIGN and Mannose Binding C-Type Lectin Receptors via a Cholesterol-Dependent Pathway. Journal of Virology, 2003, 77, 12865-12874.	3.4	127
46	Dendritic Cell-Mediated Viral Transfer to T Cells Is Required for Human Immunodeficiency Virus Type 1 Persistence in the Face of Rapid Cell Turnover. Journal of Virology, 2002, 76, 10692-10701.	3.4	56
47	Advances in HIV molecular biology. Aids, 2002, 16, S17-S23.	2.2	5
48	An In Vitro Rapid-Turnover Assay for Human Immunodeficiency Virus Type 1 Replication Selects for Cell-to-Cell Spread of Virus. Journal of Virology, 2000, 74, 10882-10891.	3.4	98
49	Cell Cycle- and Vpr-Mediated Regulation of Human Immunodeficiency Virus Type 1 Expression in Primary and Transformed T-Cell Lines. Journal of Virology, 1999, 73, 5422-5430.	3.4	109
50	Costimulatory Pathways in Lymphocyte Proliferation Induced by the Simian Immunodeficiency Virus SIVsmmPBj14. Journal of Virology, 1998, 72, 6155-6158.	3.4	11
51	SIVsmmPBj14Induces Expression of a Mucosal Integrin on Macaque Lymphocytes. Virology, 1996, 215, 97-100.	2.4	18
52	Apoptosis Correlates with Immune Activation in Intestinal Lymphoid Tissue from Macaques Acutely Infected by a Highly Enteropathic Simian Immunodeficiency Virus, SIVsmmPBj14. Virology, 1996, 225, 21-32.	2.4	30
53	Direct Sequence Analysis of Human Herpesvirus 6 (HHV-6) Sequences from Infants and Comparison of HHV-6 Sequences from Mother/Infant Pairs. Clinical Infectious Diseases, 1995, 21, 1017-1019.	5.8	38