Dyann F Wirth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6513121/publications.pdf

Version: 2024-02-01

		34016	5	51492	
148	9,123	52		86	
papers	citations	h-index		g-index	
163	163	163		7958	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	The Plasmodium falciparum ABC transporter ABCI3 confers parasite strain-dependent pleiotropic antimalarial drug resistance. Cell Chemical Biology, 2022, 29, 824-839.e6.	2.5	14
2	Chemogenomics identifies acetyl-coenzyme A synthetase as a target for malaria treatment and prevention. Cell Chemical Biology, 2022, 29, 191-201.e8.	2.5	39
3	Plasmodium falciparum genomic surveillance reveals spatial and temporal trends, association of genetic and physical distance, and household clustering. Scientific Reports, 2022, 12, 938.	1.6	13
4	Adaptive laboratory evolution in S. cerevisiae highlights role of transcription factors in fungal xenobiotic resistance. Communications Biology, 2022, 5, 128.	2.0	8
5	Plasmodium falciparum Gametocyte Density and Infectivity in Peripheral Blood and Skin Tissue of Naturally Infected Parasite Carriers in Burkina Faso. Journal of Infectious Diseases, 2021, 223, 1822-1830.	1.9	17
6	Polymorphisms in Plasmodium falciparum dihydropteroate synthetase and dihydrofolate reductase genes in Nigerian children with uncomplicated malaria using high-resolution melting technique. Scientific Reports, 2021, 11, 471.	1.6	9
7	Biomarkers to Distinguish Bacterial From Viral Pediatric Clinical Pneumonia in a Malaria-Endemic Setting. Clinical Infectious Diseases, 2021, 73, e3939-e3948.	2.9	6
8	Genomic investigation of atypical malaria cases in Kanel, northern Senegal. Malaria Journal, 2021, 20, 103.	0.8	4
9	Polymorphisms in Plasmodium falciparum chloroquine resistance transporter (Pfcrt) and multidrug-resistant gene 1 (Pfmdr-1) in Nigerian children 10Âyears post-adoption of artemisinin-based combination treatments. International Journal for Parasitology, 2021, 51, 301-310.	1.3	7
10	A framework for microbiome science in public health. Nature Medicine, 2021, 27, 766-774.	15.2	47
11	MalDA, Accelerating Malaria Drug Discovery. Trends in Parasitology, 2021, 37, 493-507.	1.5	51
12	Prioritization of Molecular Targets for Antimalarial Drug Discovery. ACS Infectious Diseases, 2021, 7, 2764-2776.	1.8	35
13	Genetic surveillance for monitoring the impact of drug use on Plasmodium falciparum populations. International Journal for Parasitology: Drugs and Drug Resistance, 2021, 17, 12-22.	1.4	15
14	Genetic evidence for imported malaria and local transmission in Richard Toll, Senegal. Malaria Journal, 2020, 19, 276.	0.8	12
15	Genetic analysis reveals unique characteristics of Plasmodium falciparum parasite populations in Haiti. Malaria Journal, 2020, 19, 379.	0.8	3
16	Use of a Plasmodium vivax genetic barcode for genomic surveillance and parasite tracking in Sri Lanka. Malaria Journal, 2020, 19, 342.	0.8	6
17	Genetic background and PfKelch13 affect artemisinin susceptibility of PfCoronin mutants in Plasmodium falciparum. PLoS Genetics, 2020, 16, e1009266.	1.5	17
18	Evidence for Reduced Malaria Parasite Population after Application of Population-Level Antimalarial Drug Strategies in Southern Province, Zambia. American Journal of Tropical Medicine and Hygiene, 2020, 103, 66-73.	0.6	8

#	Article	IF	Citations
19	Detection of low-density Plasmodium falciparum infections using amplicon deep sequencing. Malaria Journal, 2019, 18, 219.	0.8	40
20	Temporal changes in Plasmodium falciparum reticulocyte binding protein homolog 2b (PfRh2b) in Senegal and The Gambia. Malaria Journal, 2019, 18, 239.	0.8	1
21	Reply to Velavan et al.: Polymorphisms ofpfcoroninin natural populations: Implications for functional significance. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12613-12614.	3.3	5
22	Naturally acquired immunity against immature <i>Plasmodium falciparum</i> gametocytes. Science Translational Medicine, 2019, 11, .	5.8	31
23	The Adaptive Proline Response in <i>P. falciparum</i> Is Independent of <i>Pf</i> elK1 and elF2α Signaling. ACS Infectious Diseases, 2019, 5, 515-520.	1.8	5
24	In vitro selection predicts malaria parasite resistance to dihydroorotate dehydrogenase inhibitors in a mouse infection model. Science Translational Medicine, 2019, 11, .	5.8	30
25	Quantitative imaging of intraerythrocytic hemozoin by transient absorption microscopy. Journal of Biomedical Optics, 2019, 25, 1.	1.4	9
26	Host-mediated selection impacts the diversity of Plasmodium falciparum antigens within infections. Nature Communications, 2018, 9, 1381.	5.8	27
27	Inactivation of Plasmepsins 2 and 3 Sensitizes Plasmodium falciparum to the Antimalarial Drug Piperaquine. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	27
28	Identification of Collateral Sensitivity to Dihydroorotate Dehydrogenase Inhibitors in <i>Plasmodium falciparum</i> . ACS Infectious Diseases, 2018, 4, 508-515.	1.8	15
29	Dramatic Changes in Malaria Population Genetic Complexity in Dielmo and Ndiop, Senegal, Revealed Using Genomic Surveillance. Journal of Infectious Diseases, 2018, 217, 622-627.	1.9	31
30	Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science, 2018, 359, 191-199.	6.0	194
31	Plasmepsin II–III copy number accounts for bimodal piperaquine resistance among Cambodian Plasmodium falciparum. Nature Communications, 2018, 9, 1769.	5.8	85
32	Quantitative Proteomic Profiling Reveals Novel Plasmodium falciparum Surface Antigens and Possible Vaccine Candidates. Molecular and Cellular Proteomics, 2018, 17, 43-60.	2.5	29
33	Mutations in <i>Plasmodium falciparum</i> actin-binding protein coronin confer reduced artemisinin susceptibility. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12799-12804.	3.3	114
34	Characterization of Plasmodium falciparum structure in Nigeria with malaria SNPs barcode. Malaria Journal, 2018, 17, 472.	0.8	12
35	Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science, 2018, 362, .	6.0	99
36	hmmIBD: software to infer pairwise identity by descent between haploid genotypes. Malaria Journal, 2018, 17, 196.	0.8	103

#	Article	IF	CITATIONS
37	Transmission of molecularly undetectable circulating parasite clones leads to high infection complexity in mosquitoes post feeding. International Journal for Parasitology, 2018, 48, 671-677.	1.3	25
38	Global action for training in malaria elimination. Malaria Journal, 2018, 17, 51.	0.8	16
39	Bone Marrow Is a Major Parasite Reservoir in Plasmodium vivax Infection. MBio, 2018, 9, .	1.8	141
40	De Novo Mutations Resolve Disease Transmission Pathways in Clonal Malaria. Molecular Biology and Evolution, 2018, 35, 1678-1689.	3.5	14
41	Modeling the genetic relatedness of Plasmodium falciparum parasites following meiotic recombination and cotransmission. PLoS Computational Biology, 2018, 14, e1005923.	1.5	39
42	Transcriptional categorization of the etiology of pneumonia syndrome in pediatric patients in malaria endemic areas. Journal of Infectious Diseases, 2017, 215, jiw531.	1.9	8
43	Artemisinin resistance without pfkelch13 mutations in Plasmodium falciparum isolates from Cambodia. Malaria Journal, 2017, 16, 195.	0.8	99
44	Examining the human infectious reservoir for Plasmodium falciparum malaria in areas of differing transmission intensity. Nature Communications, 2017, 8, 1133.	5.8	174
45	Lysophosphatidylcholine Regulates Sexual Stage Differentiation in the Human Malaria Parasite Plasmodium falciparum. Cell, 2017, 171, 1532-1544.e15.	13.5	259
46	Case report of Plasmodium ovale curtisi malaria in Sri Lanka: relevance for the maintenance of elimination status. BMC Infectious Diseases, 2017, 17, 307.	1.3	3
47	Evidence of non-Plasmodium falciparum malaria infection in Kédougou, Sénégal. Malaria Journal, 2017, 16, 9.	0.8	38
48	High resolution melting: a useful field-deployable method to measure dhfr and dhps drug resistance in both highly and lowly endemic Plasmodium populations. Malaria Journal, 2017, 16, 153.	0.8	9
49	Genetic relatedness analysis reveals the cotransmission of genetically related Plasmodium falciparum parasites in ThiÃ's, Senegal. Genome Medicine, 2017, 9, 5.	3.6	47
50	malERA: An updated research agenda for malaria elimination and eradication. PLoS Medicine, 2017, 14, e1002456.	3.9	221
51	New paradigms for understanding and step changes in treating active and chronic, persistent apicomplexan infections. Scientific Reports, 2016, 6, 29179.	1.6	40
52	<i>Plasmodium falciparum</i> Cyclic Amine Resistance Locus (PfCARL), a Resistance Mechanism for Two Distinct Compound Classes. ACS Infectious Diseases, 2016, 2, 816-826.	1.8	34
53	Diversity-oriented synthesis yields novel multistage antimalarial inhibitors. Nature, 2016, 538, 344-349.	13.7	214
54	West Africa International Centers of Excellence for Malaria Research: Drug Resistance Patterns to Artemether–Lumefantrine in Senegal, Mali, and The Gambia. American Journal of Tropical Medicine and Hygiene, 2016, 95, 1054-1060.	0.6	19

#	Article	IF	CITATIONS
55	A Novel Methodology for Bioenergetic Analysis of <i>Plasmodium falciparum</i> Reveals a Glucose-Regulated Metabolic Shift and Enables Mode of Action Analyses of Mitochondrial Inhibitors. ACS Infectious Diseases, 2016, 2, 903-916.	1.8	26
56	Persistence of Plasmodium falciparum parasitemia after artemisinin combination therapy: evidence from a randomized trial in Uganda. Scientific Reports, 2016, 6, 26330.	1.6	34
57	A broad analysis of resistance development in the malaria parasite. Nature Communications, 2016, 7, 11901.	5.8	94
58	Responses to Bacteria, Virus, and Malaria Distinguish the Etiology of Pediatric Clinical Pneumonia. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 448-459.	2.5	42
59	Methods to Increase the Sensitivity of High Resolution Melting Single Nucleotide Polymorphism Genotyping in Malaria. Journal of Visualized Experiments, 2015, , e52839.	0.2	9
60	RDTs as a source of DNA to study Plasmodium falciparum drug resistance in isolates from Senegal and the Comoros Islands. Malaria Journal, 2015, 14, 373.	0.8	17
61	Diversity-Oriented Synthesis Probe TargetsPlasmodium falciparumCytochrome b Ubiquinone Reduction Site and Synergizes With Oxidation Site Inhibitors. Journal of Infectious Diseases, 2015, 211, 1097-1103.	1.9	29
62	COIL: a methodology for evaluating malarial complexity of infection using likelihood from single nucleotide polymorphism data. Malaria Journal, 2015, 14, 4.	0.8	71
63	The cytoplasmic prolyl-tRNA synthetase of the malaria parasite is a dual-stage target of febrifugine and its analogs. Science Translational Medicine, 2015, 7, 288ra77.	5.8	82
64	Immune Characterization of Plasmodium falciparum Parasites with a Shared Genetic Signature in a Region of Decreasing Transmission. Infection and Immunity, 2015, 83, 276-285.	1.0	11
65	Dietary restriction protects against experimental cerebral malaria via leptin modulation and T-cell mTORC1 suppression. Nature Communications, 2015, 6, 6050.	5.8	58
66	Strand-specific RNA sequencing in Plasmodium falciparum malaria identifies developmentally regulated long non-coding RNA and circular RNA. BMC Genomics, 2015, 16, 454.	1.2	160
67	Exploring the 3-piperidin-4-yl-1H-indole scaffold as a novel antimalarial chemotype. European Journal of Medicinal Chemistry, 2015, 102, 320-333.	2.6	31
68	Modeling malaria genomics reveals transmission decline and rebound in Senegal. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7067-7072.	3.3	163
69	Development of a Single Nucleotide Polymorphism Barcode to Genotype Plasmodium vivax Infections. PLoS Neglected Tropical Diseases, 2015, 9, e0003539.	1.3	90
70	Triaminopyrimidine is a fast-killing and long-acting antimalarial clinical candidate. Nature Communications, 2015, 6, 6715.	5.8	55
71	Adaptive evolution of malaria parasites in French Guiana: Reversal of chloroquine resistance by acquisition of a mutation in <i>pfcrt</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11672-11677.	3.3	101
72	Clonal Outbreak of <i>Plasmodium falciparum </i> Infection in Eastern Panama. Journal of Infectious Diseases, 2015, 211, 1087-1096.	1.9	71

#	Article	IF	Citations
73	In Vitro Resistance Selections for Plasmodium falciparum Dihydroorotate Dehydrogenase Inhibitors Give Mutants with Multiple Point Mutations in the Drug-binding Site and Altered Growth. Journal of Biological Chemistry, 2014, 289, 17980-17995.	1.6	54
74	The Sri Lankan paradox: high genetic diversity in Plasmodium vivax populations despite decreasing levels of malaria transmission. Parasitology, 2014, 141, 880-890.	0.7	55
75	Plasmodium falciparumgene expression measured directly from tissue during human infection. Genome Medicine, 2014, 6, 110.	3.6	11
76	Harnessing evolutionary fitness in <i>Plasmodium falciparum</i> for drug discovery and suppressing resistance. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 799-804.	3.3	54
77	On the road to eliminate malaria in Sri Lanka: lessons from history, challenges, gaps in knowledge and research needs. Malaria Journal, 2014, 13, 59.	0.8	55
78	Aminoazabenzimidazoles, a Novel Class of Orally Active Antimalarial Agents. Journal of Medicinal Chemistry, 2014, 57, 5702-5713.	2.9	24
79	An Adjustable Gas-Mixing Device to Increase Feasibility of In Vitro Culture of Plasmodium falciparum Parasites in the Field. PLoS ONE, 2014, 9, e90928.	1.1	6
80	Changes in drug sensitivity and anti-malarial drug resistance mutations over time among Plasmodium falciparum parasites in Senegal. Malaria Journal, 2013, 12, 441.	0.8	23
81	Polymorphism in dhfr/dhps genes, parasite density and ex vivo response to pyrimethamine in Plasmodium falciparum malaria parasites in Thies, Senegal. International Journal for Parasitology: Drugs and Drug Resistance, 2013, 3, 135-142.	1.4	27
82	Inferring Developmental Stage Composition from Gene Expression in Human Malaria. PLoS Computational Biology, 2013, 9, e1003392.	1.5	45
83	Malaria life cycle intensifies both natural selection and random genetic drift. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20129-20134.	3.3	67
84	Torins are potent antimalarials that block replenishment of <i>Plasmodium</i> liver stage parasitophorous vacuole membrane proteins. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2838-47.	3.3	73
85	Genetic Surveillance Detects Both Clonal and Epidemic Transmission of Malaria following Enhanced Intervention in Senegal. PLoS ONE, 2013, 8, e60780.	1.1	87
86	Sequence-based association and selection scans identify drug resistance loci in the <i>Plasmodium falciparum</i> malaria parasite. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13052-13057.	3.3	99
87	Rapid, Field-Deployable Method for Genotyping and Discovery of Single-Nucleotide Polymorphisms Associated with Drug Resistance in Plasmodium falciparum. Antimicrobial Agents and Chemotherapy, 2012, 56, 2976-2986.	1.4	63
88	Genomic Sequencing of Plasmodium falciparum Malaria Parasites from Senegal Reveals the Demographic History of the Population. Molecular Biology and Evolution, 2012, 29, 3427-3439.	3.5	58
89	Halofuginone and other febrifugine derivatives inhibit prolyl-tRNA synthetase. Nature Chemical Biology, 2012, 8, 311-317.	3.9	301
90	Evolution of the pfcrt T76 and pfmdr1 Y86 markers and chloroquine susceptibility 8Âyears after cessation of chloroquine use in Pikine, Senegal. Parasitology Research, 2012, 111, 1541-1546.	0.6	20

#	Article	IF	Citations
91	Application of genomics to field investigations of malaria by the international centers of excellence for malaria research. Acta Tropica, 2012, 121, 324-332.	0.9	33
92	Harnessing genomics and genome biology to understand malaria biology. Nature Reviews Genetics, 2012, 13, 315-328.	7.7	95
93	A High-Throughput Screen Targeting Malaria Transmission Stages Opens New Avenues for Drug Development. Journal of Infectious Diseases, 2011, 203, 1445-1453.	1.9	105
94	A global transcriptional analysis of Plasmodium falciparum malaria reveals a novel family of telomere-associated lncRNAs. Genome Biology, 2011, 12, R56.	13.9	124
95	Identification and Validation of Tetracyclic Benzothiazepines as Plasmodium falciparum Cytochrome bc1 Inhibitors. Chemistry and Biology, 2011, 18, 1602-1610.	6.2	50
96	Single-nucleotide polymorphism, linkage disequilibrium and geographic structure in the malaria parasite Plasmodium vivax: prospects for genome-wide association studies. BMC Genetics, 2010, 11, 65.	2.7	46
97	Geographic Structure of Plasmodium vivax: Microsatellite Analysis of Parasite Populations from Sri Lanka, Myanmar, and Ethiopia. American Journal of Tropical Medicine and Hygiene, 2010, 82, 235-242.	0.6	88
98	A Non-Radioactive DAPI-based High-Throughput In Vitro Assay to Assess Plasmodium falciparum Responsiveness to Antimalarials—Increased Sensitivity of P. falciparum to Chloroquine in Senegal. American Journal of Tropical Medicine and Hygiene, 2010, 82, 228-230.	0.6	27
99	Novel Inhibitors of Plasmodium falciparum Dihydroorotate Dehydrogenase with Anti-malarial Activity in the Mouse Model*. Journal of Biological Chemistry, 2010, 285, 33054-33064.	1.6	121
100	Patterns of Gene-Specific and Total Transcriptional Activity during the <i>Plasmodium falciparum </i> Intraerythrocytic Developmental Cycle. Eukaryotic Cell, 2009, 8, 327-338.	3.4	55
101	Type II NADH dehydrogenase of the respiratory chain of Plasmodium falciparum and its inhibitors. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 972-975.	1.0	47
102	Mutations in PFCRT K76T do not correlate with sulfadoxine–pyrimethamine–amodiaquine failure in Pikine, Senegal. Parasitology Research, 2008, 103, 765-769.	0.6	8
103	A general SNP-based molecular barcode for Plasmodium falciparum identification and tracking. Malaria Journal, 2008, 7, 223.	0.8	213
104	Extensive microsatellite diversity in the human malaria parasite Plasmodium vivax. Gene, 2008, 410, 105-112.	1.0	103
105	Identification and Characterization of Small Molecule Inhibitors of Plasmodium falciparum Dihydroorotate Dehydrogenase. Journal of Biological Chemistry, 2008, 283, 35078-35085.	1.6	78
106	Genetic Diversity and Selection at the Plasmodium vivax Apical Membrane Antigen-1 (PvAMA-1) Locus in a Sri Lankan Population. Molecular Biology and Evolution, 2007, 24, 939-947.	3.5	66
107	High-Throughput Plasmodium falciparum Growth Assay for Malaria Drug Discovery. Antimicrobial Agents and Chemotherapy, 2007, 51, 716-723.	1.4	150
108	Population Structure and Transmission Dynamics of Plasmodium vivaxin Rural Amazonia. Journal of Infectious Diseases, 2007, 195, 1218-1226.	1.9	129

#	Article	IF	CITATIONS
109	Genomic heterogeneity in the density of noncoding single-nucleotide and microsatellite polymorphisms in Plasmodium falciparum. Gene, 2007, 387, 1-6.	1.0	8
110	A genome-wide map of diversity in Plasmodium falciparum. Nature Genetics, 2007, 39, 113-119.	9.4	320
111	Plasmodium falciparum: Genome wide perturbations in transcript profiles among mixed stage cultures after chloroquine treatment. Experimental Parasitology, 2007, 117, 87-92.	0.5	49
112	Regulatory motifs uncovered among gene expression clusters in Plasmodium falciparum. Molecular and Biochemical Parasitology, 2007, 153, 19-30.	0.5	31
113	The role of DNA mismatch repair in generating genetic diversity and drug resistance in malaria parasites. Molecular and Biochemical Parasitology, 2007, 155, 18-25.	0.5	23
114	Duplication, gene conversion, and genetic diversity in the species-specific acyl-CoA synthetase gene family of Plasmodium falciparum. Molecular and Biochemical Parasitology, 2006, 150, 10-24.	0.5	47
115	A Systematic Map of Genetic Variation in Plasmodium falciparum. PLoS Pathogens, 2006, 2, e57.	2.1	176
116	In vivo and in vitro analysis of chloroquine resistance in Plasmodium falciparum isolates from Senegal. Parasitology Research, 2005, 97, 136-140.	0.6	14
117	In Vivo Transcriptome ofPlasmodium falciparumReveals Overexpression of Transcripts That Encode Surface Proteins. Journal of Infectious Diseases, 2005, 191, 1196-1203.	1.9	92
118	RNA polymerase II synthesizes antisense RNA in Plasmodium falciparum. Rna, 2005, 11, 365-370.	1.6	56
119	Identification of regulatory elements in the Plasmodium falciparum genome. Molecular and Biochemical Parasitology, 2004, 134, 75-88.	0.5	85
120	Widespread distribution of antisense transcripts in the Plasmodium falciparum genome. Molecular and Biochemical Parasitology, 2004, 136, 35-42.	0.5	104
121	Mapping of the Plasmodium falciparum multidrug resistance gene 5′-upstream region, and evidence of induction of transcript levels by antimalarial drugs in chloroquine sensitive parasites. Molecular Microbiology, 2004, 49, 671-683.	1.2	35
122	In vivo transcriptional profiling of Plasmodium falciparum. Malaria Journal, 2004, 3, 30.	0.8	52
123	A new reporter gene for transient transfection of Plasmodium falciparum. Parasitology Research, 2003, 89, 154-157.	0.6	29
124	Linker scanning mutagenesis of the Plasmodium gallinaceum sexual stage specific gene pgs28 reveals a novel downstream cis-control element. Molecular and Biochemical Parasitology, 2003, 129, 199-208.	0.5	19
125	Drug-induced alterations in gene expression of the asexual blood forms of Plasmodium falciparum. Molecular Microbiology, 2003, 50, 1229-1239.	1.2	48
126	Gene Conversion as a Source of Nucleotide Diversity in Plasmodium falciparum. Molecular Biology and Evolution, 2003, 20, 726-734.	3.5	51

#	Article	IF	CITATIONS
127	Excess Polymorphisms in Genes for Membrane Proteins in Plasmodium falciparum. Science, 2002, 298, 216-218.	6.0	80
128	In vitro chloroquine susceptibility and PCR analysis of pfcrt and pfmdr1 polymorphisms in Plasmodium falciparum isolates from Senegal American Journal of Tropical Medicine and Hygiene, 2002, 66, 474-480.	0.6	67
129	Drugs for neglected diseases: a failure of the market and a public health failure?. Tropical Medicine and International Health, 2001, 6, 945-951.	1.0	131
130	Serial analysis of gene expression (SAGE) in Plasmodium falciparum: application of the technique to A–T rich genomes. Molecular and Biochemical Parasitology, 2001, 113, 23-34.	0.5	45
131	Deletion analysis of the 5′ flanking sequence of the Plasmodium gallinaceum sexual stage specific gene pgs28 suggests a bipartite arrangement of cis-control elements. Molecular and Biochemical Parasitology, 2001, 113, 183-187.	0.5	13
132	Recent Origin of Plasmodium falciparum from a Single Progenitor. Science, 2001, 293, 482-484.	6.0	197
133	Serial Analysis of Gene Expression in <i>Plasmodium falciparum</i> Reveals the Global Expression Profile of Erythrocytic Stages and the Presence of Anti-Sense Transcripts in the Malarial Parasite. Molecular Biology of the Cell, 2001, 12, 3114-3125.	0.9	139
134	The signal sequence and C-terminal hydrophobic domain are required for localization of the sexual stage antigen Pgs28 to the surface of P. gallinaceum ookinetes. Molecular and Biochemical Parasitology, 2000, 111, 425-435.	0.5	3
135	3′ UTR elements enhance expression of Pgs28, an ookinete protein of Plasmodium gallinaceumâ~†. Molecular and Biochemical Parasitology, 2000, 105, 61-70.	0.5	28
136	Host Cell Proteins Bind Specifically to the Capsid-Cleaved 5' End of Leishmaniavirus RNA. Journal of Biochemistry, 1999, 126, 538-544.	0.9	3
137	Isolation and Functional Characterization of Two Distinct Sexual-Stage-Specific Promoters of the Human Malaria Parasite <i>Plasmodium falciparum</i> 967-978.	1.1	89
138	Malaria: A 21st century solution for an ancient disease. Nature Medicine, 1998, 4, 1360-1362.	15.2	12
139	Stage-specific transcripts of the Plasmodium falciparum pfmdr1 gene. Molecular and Biochemical Parasitology, 1993, 57, 203-211.	0.5	39
140	Amplification of pfmdr1 associated with mefloquine and halofantrine resistance in Plasmodium falciparum from Thailand. Molecular and Biochemical Parasitology, 1993, 57, 151-160.	0.5	263
141	Stable expression of the bacterial neor gene in Leishmania enriettii. Nature, 1990, 343, 572-574.	13.7	158
142	A Cloned DNA Fragment for Identification of Mycobacterium tuberculosis. Clinical Infectious Diseases, 1989, 11, S411-S419.	2.9	15
143	Comparison of Thick Films, in Vitro Culture and DNA Hybridization Probes for Detecting Plasmodium falciparum Malaria. American Journal of Tropical Medicine and Hygiene, 1989, 40, 3-6.	0.6	38
144	Characterization of the Filarial Genome. Novartis Foundation Symposium, 1987, 127, 107-124.	1.2	2

#	Article	IF	CITATIONS
145	Identification of Brugia Malayi in Vectors with a Species-Specific DNA Probe. American Journal of Tropical Medicine and Hygiene, 1986, 35, 559-564.	0.6	23
146	Malaria: new tools for epidemiological analysis. Memorias Do Instituto Oswaldo Cruz, 1986, 81, 231-234.	0.8	0
147	Sequence of the immunodominant epitope for the surface protein on sporozoites of Plasmodium vivax. Science, 1985, 230, 1381-1383.	6.0	101
148	Control of tubulin gene expression in the parasitic protozoan Leishmania enriettii. Nature, 1984, 309, 716-717.	13.7	49