James F Pankow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6512391/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An absorption model of gas/particle partitioning of organic compounds in the atmosphere. Atmospheric Environment, 1994, 28, 185-188.	4.1	1,426
2	An absorption model of the gas/aerosol partitioning involved in the formation of secondary organic aerosol. Atmospheric Environment, 1994, 28, 189-193.	4.1	896
3	ORGANIC ATMOSPHERIC PARTICULATE MATERIAL. Annual Review of Physical Chemistry, 2003, 54, 121-140.	10.8	536
4	Hidden Formaldehyde in E-Cigarette Aerosols. New England Journal of Medicine, 2015, 372, 392-394.	27.0	496
5	Thirdhand Tobacco Smoke: Emerging Evidence and Arguments for a Multidisciplinary Research Agenda. Environmental Health Perspectives, 2011, 119, 1218-1226.	6.0	355
6	Flavour chemicals in electronic cigarette fluids. Tobacco Control, 2016, 25, e10-e15.	3.2	283
7	Nonequilibrium atmospheric secondary organic aerosol formation and growth. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2836-2841.	7.1	261
8	A Consideration of the Role of Gas/Particle Partitioning in the Deposition of Nicotine and Other Tobacco Smoke Compounds in the Respiratory Tract. Chemical Research in Toxicology, 2001, 14, 1465-1481.	3.3	194
9	Modeling the Formation of Secondary Organic Aerosol (SOA). 2. The Predicted Effects of Relative Humidity on Aerosol Formation in the α-Pinene-, β-Pinene-, Sabinene-, Δ3-Carene-, and Cyclohexene-Ozone Systems. Environmental Science & Technology, 2001, 35, 1806-1817.	10.0	180
10	Thermodynamics of the formation of atmospheric organic particulate matter by accretion reactions—Part 1: aldehydes and ketones. Atmospheric Environment, 2004, 38, 4371-4382.	4.1	166
11	High-Nicotine Electronic Cigarette Products: Toxicity of JUUL Fluids and Aerosols Correlates Strongly with Nicotine and Some Flavor Chemical Concentrations. Chemical Research in Toxicology, 2019, 32, 1058-1069.	3.3	161
12	Benzene formation in electronic cigarettes. PLoS ONE, 2017, 12, e0173055.	2.5	149
13	Modeling the Formation of Secondary Organic Aerosol. 1. Application of Theoretical Principles to Measurements Obtained in the α-Pinene/, Î2-Pinene/, Sabinene/, Δ3-Carene/, and Cyclohexene/Ozone Systems. Environmental Science & Technology, 2001, 35, 1164-1172.	10.0	129
14	Thermodynamics of the formation of atmospheric organic particulate matter by accretion reactions—Part 3: Carboxylic and dicarboxylic acids. Atmospheric Environment, 2006, 40, 6676-6686.	4.1	122
15	Distribution, quantification and toxicity of cinnamaldehyde in electronic cigarette refill fluids and aerosols. Tobacco Control, 2016, 25, ii94-ii102.	3.2	120
16	Analytical and toxicological evaluation of flavor chemicals in electronic cigarette refill fluids. Scientific Reports, 2018, 8, 8288.	3.3	118
17	Gas/particle partitioning of neutral and ionizing compounds to single and multi-phase aerosol particles. 1. Unified modeling framework. Atmospheric Environment, 2003, 37, 3323-3333.	4.1	113
18	Dissolution of Dense Chlorinated Solvents into Ground Water: 1. Dissolution from a Well-Defined Residual Source. Ground Water. 1992. 30. 250-256.	1.3	105

JAMES F PANKOW

#	Article	IF	CITATIONS
19	Thermodynamics of the formation of atmospheric organic particulate matter by accretion reactions—2. Dialdehydes, methylglyoxal, and diketones. Atmospheric Environment, 2005, 39, 6597-6607.	4.1	105
20	High concentrations of flavor chemicals are present in electronic cigarette refill fluids. Scientific Reports, 2019, 9, 2468.	3.3	105
21	Identification of Cytotoxic Flavor Chemicals in Top-Selling Electronic Cigarette Refill Fluids. Scientific Reports, 2019, 9, 2782.	3.3	104
22	Gas/Particle Partitioning of Organic Compounds to Environmental Tobacco Smoke: Partition Coefficient Measurements by Desorption and Comparison to Urban Particulate Material. Environmental Science & Technology, 1996, 30, 2800-2805.	10.0	103
23	The carbon number-polarity grid: A means to manage the complexity of the mix of organic compounds when modeling atmospheric organic particulate matter. Atmospheric Environment, 2009, 43, 2829-2835.	4.1	100
24	Determination of a Wide Range of Volatile Organic Compounds in Ambient Air Using Multisorbent Adsorption/Thermal Desorption and Gas Chromatography/Mass Spectrometry. Analytical Chemistry, 1998, 70, 5213-5221.	6.5	92
25	Percent Free Base Nicotine in the Tobacco Smoke Particulate Matter of Selected Commercial and Reference Cigarettes. Chemical Research in Toxicology, 2003, 16, 1014-1018.	3.3	77
26	Candy Flavorings in Tobacco. New England Journal of Medicine, 2014, 370, 2250-2252.	27.0	75
27	Conversion of Nicotine in Tobacco Smoke to Its Volatile and Available Free-Base Form through the Action of Gaseous Ammonia. Environmental Science & Technology, 1997, 31, 2428-2433.	10.0	74
28	Free-Base Nicotine Determination in Electronic Cigarette Liquids by ¹ H NMR Spectroscopy. Chemical Research in Toxicology, 2018, 31, 431-434.	3.3	73
29	Modeling regional secondary organic aerosol using the Master Chemical Mechanism. Atmospheric Environment, 2015, 102, 52-61.	4.1	70
30	Gas/particle partitioning of neutral and ionizing compounds to single- and multi-phase aerosol particles. 2. Phase separation in liquid particulate matter containing both polar and low-polarity organic compounds. Atmospheric Environment, 2004, 38, 1005-1013.	4.1	69
31	Calculated Cancer Risks for Conventional and "Potentially Reduced Exposure Product―Cigarettes. Cancer Epidemiology Biomarkers and Prevention, 2007, 16, 584-592.	2.5	49
32	Air Sparging in Gate Wells in Cutoff Walls and Trenches for Control of Plumes of Volatile Organic Compounds (VOCs). Ground Water, 1993, 31, 654-663.	1.3	45
33	Variation in the Sensitivity of Predicted Levels of Atmospheric Organic Particulate Matter (OPM). Environmental Science & Technology, 2008, 42, 7321-7329.	10.0	41
34	Water uptake by organic aerosol and its influence on gas/particle partitioning of secondary organic aerosol in the United States. Atmospheric Environment, 2016, 129, 142-154.	4.1	39
35	Delivery Levels and Behavior of 1,3-Butadiene, Acrylonitrile, Benzene, and Other Toxic Volatile Organic Compounds in Mainstream Tobacco Smoke from Two Brands of Commercial Cigarettes. Chemical Research in Toxicology, 2004, 17, 805-813.	3.3	38
36	Calculating compound dependent gas-droplet distributions in aerosols of propylene glycol and glycerol from electronic cigarettes. Journal of Aerosol Science, 2017, 107, 9-13.	3.8	37

JAMES F PANKOW

#	Article	IF	CITATIONS
37	Flavour chemicals in a sample of non-cigarette tobacco products without explicit flavour names sold in New York City in 2015. Tobacco Control, 2018, 27, 170-176.	3.2	37
38	Flavour chemicals, synthetic coolants and pulegone in popular mint-flavoured and menthol-flavoured e-cigarettes. Tobacco Control, 2022, 31, e3-e9.	3.2	37
39	Nicotine in tobacco product aerosols: †It's déjà vu all over again'. Tobacco Control, 2020, 29, tobaccocontrol-2019-055275.	3.2	36
40	Menthol in electronic cigarettes: A contributor to respiratory disease?. Toxicology and Applied Pharmacology, 2020, 407, 115238.	2.8	30
41	Boiling points of the propylene glycol + glycerol system at 1 atmosphere pressure: 188.6–292 °C and with added water or nicotine. Chemical Engineering Communications, 2018, 205, 1691-1700.	C without	28
42	Molecular view modeling of atmospheric organic particulate matter: Incorporating molecular structure and co-condensation of water. Atmospheric Environment, 2015, 122, 400-408.	4.1	27
43	Organic particulate material levels in the atmosphere: Conditions favoring sensitivity to varying relative humidity and temperature. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6682-6686.	7.1	24
44	The interaction of mechanically generated turbulence and interfacial films with a liquid phase controlled gaslliquid transport process. Tellus, Series B: Chemical and Physical Meteorology, 2022, 38, 305.	1.6	22
45	Fraction of Free-Base Nicotine in Fresh Smoke Particulate Matter from the Eclipse "Cigarette―by 1H NMR Spectroscopy. Chemical Research in Toxicology, 2003, 16, 23-27.	3.3	21
46	Gas/Particle Partitioning Constants of Nicotine, Selected Toxicants, and Flavor Chemicals in Solutions of 50/50 Propylene Glycol/Glycerol As Used in Electronic Cigarettes. Chemical Research in Toxicology, 2018, 31, 985-990.	3.3	21
47	Application of the np+mP modeling approach for simulating secondary organic particulate matter formation from α-pinene oxidation. Atmospheric Environment, 2011, 45, 6812-6819.	4.1	20
48	Phase considerations in the gas/particle partitioning of organic amines in the atmosphere. Atmospheric Environment, 2015, 122, 448-453.	4.1	18
49	Disposable Puff Bar Electronic Cigarettes: Chemical Composition and Toxicity of E-liquids and a Synthetic Coolant. Chemical Research in Toxicology, 2022, 35, 1344-1358.	3.3	17
50	Electronic Cigarette Refill Fluids Sold Worldwide: Flavor Chemical Composition, Toxicity, and Hazard Analysis. Chemical Research in Toxicology, 2020, 33, 2972-2987.	3.3	16
51	'Menthol-Plus': a major category of cigarette found among â€ [~] concept' descriptor cigarettes from Mexico. Tobacco Control, 2022, 31, e18-e24.	3.2	15
52	E-cigarette fluids and aerosol residues cause oxidative stress and an inflammatory response in human keratinocytes and 3D skin models. Toxicology in Vitro, 2021, 77, 105234.	2.4	11
53	Design of a Ground-Water Sampler for Collecting Volatile Organics and Dissolved Gases in Small-Diameter Wellsa. Ground Water, 1987, 25, 448-454.	1.3	10
54	Free-Base Nicotine Fraction α _{fb} in Non-Aqueous versus Aqueous Solutions: Electronic Cigarette Fluids Without versus With Dilution with Water. Chemical Research in Toxicology, 2020, 33, 1729-1735.	3.3	10

James F Pankow

#	Article	IF	CITATIONS
55	Tracing the movement of electronic cigarette flavor chemicals and nicotine from refill fluids to aerosol, lungs, exhale, and the environment. Chemosphere, 2022, 286, 131494.	8.2	10
56	On the ability of the gas/particle partitioning constant Kp to consider the effects of mean MW and the presence of high MW compounds. Atmospheric Environment, 2011, 45, 1213-1216.	4.1	6
57	Equations for the sensitivity of the equilibrium mass concentration of organic particulate matter with respect to changes in ambient parameters: A technical note. Atmospheric Environment, 2013, 64, Combinatorial variation of structure in considerations of compound lumping in one- and	4.1	5
58	two-dimensional property representations of condensable atmospheric organic compounds. 1. Lumping by 1-D volatility with <mml:math <br="" altimg="si1.gif" overflow="scroll">xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd"</mml:math>	4.1	3
59	201 The Atmosphere can be a Source of Certain Water Soluble Volatile Organic Compounds in Urban Streams. Journal of the American Water Resources Association, 2014, 50, 1124-1137.	2.4	2
60	Do Not Steal. The Commons Tale of win–lose, win–win–LOSE, and lose–lose–LOSE. Environmental Science & Technology, 2021, 55, 14333-14337.	10.0	2
61	Measurement of the Free-Base Nicotine Fraction (α _{fb}) in Electronic Cigarette Liquids by Headspace Solid-Phase Microextraction. Chemical Research in Toxicology, 2021, 34, 2227-2233.	3.3	2
62	SOURCE APPORTIONMENT MODELING OF VOLATILE ORGANIC COMPOUNDS IN STREAMS. Environmental Toxicology and Chemistry, 2006, 25, 921.	4.3	1