

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6512307/publications.pdf Version: 2024-02-01

Іг 7нн

#	Article	IF	CITATIONS
1	Dynamic structural evolution of iron catalysts involving competitive oxidation and carburization during CO ₂ hydrogenation. Science Advances, 2022, 8, eabm3629.	10.3	92
2	Boosting the Production of Higher Alcohols from CO ₂ and H ₂ over Mn- and K-Modified Iron Carbide. Industrial & Engineering Chemistry Research, 2022, 61, 7266-7274.	3.7	4
3	Promoting Propane Dehydrogenation with CO ₂ over the PtFe Bimetallic Catalyst by Eliminating the Non-selective Fe(0) Phase. ACS Catalysis, 2022, 12, 6559-6569.	11.2	26
4	Crystallographic dependence of CO2 hydrogenation pathways over HCP-Co and FCC-Co catalysts. Applied Catalysis B: Environmental, 2022, 315, 121529.	20.2	24
5	Unraveling the tunable selectivity on cobalt oxide and metallic cobalt sites for CO2 hydrogenation. Chemical Engineering Journal, 2022, 446, 137217.	12.7	13
6	Boosting light olefin selectivity in CO2 hydrogenation by adding Co to Fe catalysts within close proximity. Catalysis Today, 2021, 371, 142-149.	4.4	43
7	Reaction-driven surface reconstruction of ZnAl2O4 boosts the methanol selectivity in CO2 catalytic hydrogenation. Applied Catalysis B: Environmental, 2021, 284, 119700.	20.2	53
8	CO ₂ Hydrogenation to Methanol over In ₂ O ₃ -Based Catalysts: From Mechanism to Catalyst Development. ACS Catalysis, 2021, 11, 1406-1423.	11.2	198
9	Facile Preparation of Methyl Phenols from Ethanol over Lamellar Ce(OH)SO ₄ · <i>x</i> H ₂ O. ACS Catalysis, 2021, 11, 6162-6174.	11.2	9
10	Promoting propane dehydrogenation with CO2 over Ga2O3/SiO2 by eliminating Ga-hydrides. Chinese Journal of Catalysis, 2021, 42, 2225-2233.	14.0	13
11	Structural and Catalytic Properties of Isolated Pt ²⁺ Sites in Platinum Phosphide (PtP ₂). ACS Catalysis, 2021, 11, 13496-13509.	11.2	15
12	Variation in the In ₂ O ₃ Crystal Phase Alters Catalytic Performance toward the Reverse Water Gas Shift Reaction. ACS Catalysis, 2020, 10, 3264-3273.	11.2	112
13	Promoting effect of Fe on supported Ni catalysts in CO2 methanation by in situ DRIFTS and DFT study. Journal of Catalysis, 2020, 392, 266-277.	6.2	118
14	Deconvolution of the Particle Size Effect on CO ₂ Hydrogenation over Iron-Based Catalysts. ACS Catalysis, 2020, 10, 7424-7433.	11.2	108
15	A combined experimental and DFT study of H2O effect on In2O3/ZrO2 catalyst for CO2 hydrogenation to methanol. Journal of Catalysis, 2020, 383, 283-296.	6.2	73
16	Hydrodeoxygenation of Guaiacol Catalyzed by ZrO ₂ –CeO ₂ -Supported Nickel Catalysts with High Loading. Energy & Fuels, 2020, 34, 4685-4692.	5.1	21
17	Uniform PdH0.33 nanodendrites with a high oxygen reduction activity tuned by lattice H. Electrochemistry Communications, 2019, 102, 67-71.	4.7	12
18	CO ₂ Hydrogenation on Unpromoted and M-Promoted Co/TiO ₂ Catalysts (M =) Tj ETQ	q0 0 0 rgE 11.2	3T /Overlock 1 130

Distribution. ACS Catalysis, 2019, 9, 2739-2751.

Јіе Ζни

#	Article	IF	CITATIONS
19	Utilization of CO2 for aromatics production over ZnO/ZrO2-ZSM-5 tandem catalyst. Journal of CO2 Utilization, 2019, 29, 140-145.	6.8	96
20	Hydrodeoxygenation of Guaiacol Catalyzed by High-Loading Ni Catalysts Supported on SiO ₂ –TiO ₂ Binary Oxides. Industrial & Engineering Chemistry Research, 2019, 58, 1513-1524.	3.7	55
21	A short review of recent advances in CO ₂ hydrogenation to hydrocarbons over heterogeneous catalysts. RSC Advances, 2018, 8, 7651-7669.	3.6	499
22	Direct Transformation of Carbon Dioxide to Value-Added Hydrocarbons by Physical Mixtures of Fe ₅ C ₂ and K-Modified Al ₂ O ₃ . Industrial & Engineering Chemistry Research, 2018, 57, 9120-9126.	3.7	56
23	Molecular Mechanisms for Anti-aging of Low-Vacuum Cold Plasma Pretreatment in Caenorhabditis elegans. Applied Biochemistry and Biotechnology, 0, , .	2.9	3