Jie Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6512307/publications.pdf

Version: 2024-02-01

516710 677142 1,773 23 16 22 citations h-index g-index papers 23 23 23 1752 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	A short review of recent advances in CO ₂ hydrogenation to hydrocarbons over heterogeneous catalysts. RSC Advances, 2018, 8, 7651-7669.	3.6	499
2	CO ₂ Hydrogenation to Methanol over In ₂ O ₃ -Based Catalysts: From Mechanism to Catalyst Development. ACS Catalysis, 2021, 11, 1406-1423.	11.2	198
3	CO ₂ Hydrogenation on Unpromoted and M-Promoted Co/TiO ₂ Catalysts (M =) Tj ETQc Distribution. ACS Catalysis, 2019, 9, 2739-2751.	q1 1 0.784 11.2	4314 rgBT /O
4	Promoting effect of Fe on supported Ni catalysts in CO2 methanation by in situ DRIFTS and DFT study. Journal of Catalysis, 2020, 392, 266-277.	6.2	118
5	Variation in the In ₂ O ₃ Crystal Phase Alters Catalytic Performance toward the Reverse Water Gas Shift Reaction. ACS Catalysis, 2020, 10, 3264-3273.	11.2	112
6	Deconvolution of the Particle Size Effect on CO ₂ Hydrogenation over Iron-Based Catalysts. ACS Catalysis, 2020, 10, 7424-7433.	11.2	108
7	Utilization of CO2 for aromatics production over ZnO/ZrO2-ZSM-5 tandem catalyst. Journal of CO2 Utilization, 2019, 29, 140-145.	6.8	96
8	Dynamic structural evolution of iron catalysts involving competitive oxidation and carburization during CO ₂ hydrogenation. Science Advances, 2022, 8, eabm3629.	10.3	92
9	A combined experimental and DFT study of H2O effect on In2O3/ZrO2 catalyst for CO2 hydrogenation to methanol. Journal of Catalysis, 2020, 383, 283-296.	6.2	73
10	Direct Transformation of Carbon Dioxide to Value-Added Hydrocarbons by Physical Mixtures of Fe ₅ C ₂ and K-Modified Al ₂ O ₃ . Industrial & Engineering Chemistry Research, 2018, 57, 9120-9126.	3.7	56
11	Hydrodeoxygenation of Guaiacol Catalyzed by High-Loading Ni Catalysts Supported on SiO ₂ –TiO ₂ Binary Oxides. Industrial & Diagram of the second of	3.7	55
12	Reaction-driven surface reconstruction of ZnAl2O4 boosts the methanol selectivity in CO2 catalytic hydrogenation. Applied Catalysis B: Environmental, 2021, 284, 119700.	20.2	53
13	Boosting light olefin selectivity in CO2 hydrogenation by adding Co to Fe catalysts within close proximity. Catalysis Today, 2021, 371, 142-149.	4.4	43
14	Promoting Propane Dehydrogenation with CO ₂ over the PtFe Bimetallic Catalyst by Eliminating the Non-selective Fe(0) Phase. ACS Catalysis, 2022, 12, 6559-6569.	11.2	26
15	Crystallographic dependence of CO2 hydrogenation pathways over HCP-Co and FCC-Co catalysts. Applied Catalysis B: Environmental, 2022, 315, 121529.	20.2	24
16	Hydrodeoxygenation of Guaiacol Catalyzed by ZrO ₂ –CeO ₂ -Supported Nickel Catalysts with High Loading. Energy & Supported Nickel Republic Supported Nickel Republic Supported Nickel Ni	5.1	21
17	Structural and Catalytic Properties of Isolated Pt ²⁺ Sites in Platinum Phosphide (PtP ₂). ACS Catalysis, 2021, 11, 13496-13509.	11.2	15
18	Promoting propane dehydrogenation with CO2 over Ga2O3/SiO2 by eliminating Ga-hydrides. Chinese Journal of Catalysis, 2021, 42, 2225-2233.	14.0	13

#	Article	IF	CITATION
19	Unraveling the tunable selectivity on cobalt oxide and metallic cobalt sites for CO2 hydrogenation. Chemical Engineering Journal, 2022, 446, 137217.	12.7	13
20	Uniform PdH0.33 nanodendrites with a high oxygen reduction activity tuned by lattice H. Electrochemistry Communications, 2019, 102, 67-71.	4.7	12
21	Facile Preparation of Methyl Phenols from Ethanol over Lamellar Ce(OH)SO ₄ Â <i>x</i> H ₂ O. ACS Catalysis, 2021, 11, 6162-6174.	11.2	9
22	Boosting the Production of Higher Alcohols from CO ₂ and H ₂ over Mn- and K-Modified Iron Carbide. Industrial & Engineering Chemistry Research, 2022, 61, 7266-7274.	3.7	4
23	Molecular Mechanisms for Anti-aging of Low-Vacuum Cold Plasma Pretreatment in Caenorhabditis elegans. Applied Biochemistry and Biotechnology, 0, , .	2.9	3