
Nicholas B Tito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6511974/publications.pdf Version: 2024-02-01

Νιζμοιλς Β.Τιτο

#	Article	IF	CITATIONS
1	Glass transition of polymers in bulk, confined geometries, and near interfaces. Reports on Progress in Physics, 2017, 80, 036602.	20.1	315
2	Lattice model of mobility at interfaces: free surfaces, substrates, and bilayers. Soft Matter, 2013, 9, 9403.	2.7	53
3	Protruding organic surfaces triggered by in-plane electric fields. Nature Communications, 2017, 8, 1526.	12.8	53
4	A quantitative view on multivalent nanomedicine targeting. Advanced Drug Delivery Reviews, 2021, 169, 1-21.	13.7	52
5	Lattice model of dynamic heterogeneity and kinetic arrest in glass-forming liquids. Soft Matter, 2013, 9, 3173.	2.7	35
6	Determinants of Ligand-Functionalized DNA Nanostructure–Cell Interactions. Journal of the American Chemical Society, 2021, 143, 10131-10142.	13.7	34
7	Self-Assembly of Lamellar Microphases in Linear Gradient Copolymer Melts. Macromolecules, 2010, 43, 10612-10620.	4.8	28
8	Harnessing entropy to enhance toughness in reversibly crosslinked polymer networks. Soft Matter, 2019, 15, 2190-2203.	2.7	23
9	Hierarchical Multivalent Effects Control Influenza Host Specificity. ACS Central Science, 2020, 6, 2311-2318.	11.3	20
10	Optimizing the Selectivity of Surface-Adsorbing Multivalent Polymers. Macromolecules, 2014, 47, 7496-7509.	4.8	17
11	Communication: Simple approach for calculating the binding free energy of a multivalent particle. Journal of Chemical Physics, 2016, 144, 161101.	3.0	17
12	Application of a coarse-grained model for DNA to homo- and heterogeneous melting equilibria. Chemical Physics Letters, 2010, 485, 354-359.	2.6	8
13	Enhanced diffusion and mobile fronts in a simple lattice model of glass-forming liquids. Soft Matter, 2015, 11, 7792-7801.	2.7	8
14	Switch-like surface binding of competing multivalent particles. European Physical Journal: Special Topics, 2016, 225, 1673-1682.	2.6	8
15	Self-Consistent Field Lattice Model for Polymer Networks. Macromolecules, 2017, 50, 9788-9795.	4.8	7
16	Multivalent "attacker and guard―strategy for targeting surfaces with low receptor density. Journal of Chemical Physics, 2019, 150, 184907.	3.0	7
17	First-order â€~hyper-selective' binding transition of multivalent particles under force. Journal of Physics Condensed Matter, 2020, 32, 214002.	1.8	6
18	Ball-of-Yarn Conformation of a Linear Gradient Copolymer in a Homopolymer Melt. Macromolecules, 2012, 45, 7607-7620.	4.8	5

NICHOLAS B TITO

#	Article	IF	CITATIONS
19	Dynamical Landau–de Gennes theory for electrically-responsive liquid crystal networks. Physical Review E, 2020, 102, 042703.	2.1	4
20	Rheology, Rupture, Reinforcement and Reversibility: Computational Approaches for Dynamic Network Materials. Advances in Polymer Science, 2020, , 63-126.	0.8	3
21	Controlling permeation in electrically deforming liquid crystal network films: A dynamical Landau theory. Physical Review E, 2021, 104, 054701.	2.1	1