Timothy F Jamison

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6511860/publications.pdf

Version: 2024-02-01

181	17,571	71 h-index	126
papers	citations		g-index
188	188	188	13514
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Synthesis of (±)-Emtricitabine and (±)-Lamivudine by Chlorotrimethylsilane–Sodium Iodide-Promoted Vorbrüggen Glycosylation. Journal of Organic Chemistry, 2022, 87, 2887-2897.	1.7	2
2	Bayesian Optimization of Computer-Proposed Multistep Synthetic Routes on an Automated Robotic Flow Platform. ACS Central Science, 2022, 8, 825-836.	5.3	47
3	Diastereoselectivity is in the Details: Minor Changes Yield Major Improvements to the Synthesis of Bedaquiline**. Chemistry - A European Journal, 2022, 28, .	1.7	4
4	A Concise Route to MK-4482 (EIDD-2801) from Cytidine: Part 2. Synlett, 2021, 32, 326-328.	1.0	21
5	Design of dynamic trajectories for efficient and data-rich exploration of flow reaction design spaces. Reaction Chemistry and Engineering, 2021, 6, 2306-2314.	1.9	14
6	Di- <i>tert</i> -butyl Phosphonate Route to the Antiviral Drug Tenofovir. Organic Process Research and Development, 2021, 25, 789-798.	1.3	8
7	Progress Toward a Large-Scale Synthesis of Molnupiravir (MK-4482, EIDD-2801) from Cytidine. ACS Omega, 2021, 6, 10396-10402.	1.6	35
8	Ready, Set, Flow! Automated Continuous Synthesis and Optimization. Trends in Chemistry, 2021, 3, 373-386.	4.4	74
9	A Call for Increased Focus on Reproductive Health within Lab Safety Culture. Journal of the American Chemical Society, 2021, 143, 12422-12427.	6.6	5
10	Continuous dimethyldioxirane generation for polymer epoxidation. Polymer Chemistry, 2021, 12, 489-493.	1.9	5
11	Continuous flow strategies for using fluorinated greenhouse gases in fluoroalkylations. Chemical Society Reviews, 2021, 50, 7378-7394.	18.7	35
12	Toward a Practical, Nonenzymatic Process for Investigational COVID-19 Antiviral Molnupiravir from Cytidine: Supply-Centered Synthesis. Organic Process Research and Development, 2021, 25, 2679-2685.	1.3	14
13	Monolithic Silica Support for Immobilized Catalysis in Continuous Flow. Advanced Synthesis and Catalysis, 2020, 362, 314-319.	2.1	15
14	On-Demand Generation and Use in Continuous Synthesis of the Ambiphilic Nitrogen Source Chloramine. Organic Letters, 2020, 22, 8392-8395.	2.4	7
15	Total Synthesis of (±)-Sceptrin. Organic Letters, 2020, 22, 6698-6702.	2.4	8
16	Continuous Production of Five Active Pharmaceutical Ingredients in Flexible Plug-and-Play Modules: A Demonstration Campaign. Organic Process Research and Development, 2020, 24, 2183-2196.	1.3	50
17	Deuteriodifluoromethylation and <i>gem</i> â€Difluoroalkenylation of Aldehydes Using ClCF ₂ H in Continuous Flow. Angewandte Chemie - International Edition, 2020, 59, 13885-13890.	7.2	27
18	Deuteriodifluoromethylation and gem â€Difluoroalkenylation of Aldehydes Using ClCF 2 H in Continuous Flow. Angewandte Chemie, 2020, 132, 13989-13994.	1.6	4

#	Article	IF	CITATIONS
19	A Scalable Membrane Pervaporation Approach for Continuous Flow Olefin Metathesis. Organic Process Research and Development, 2020, 24, 2298-2303.	1.3	14
20	Continuous-Flow Synthesis of Tramadol from Cyclohexanone. Synlett, 2020, 31, 1888-1893.	1.0	10
21	A concise route to MK-4482 (EIDD-2801) from cytidine. Chemical Communications, 2020, 56, 13363-13364.	2.2	39
22	A robotic platform for flow synthesis of organic compounds informed by AI planning. Science, 2019, 365, .	6.0	548
23	Modular Continuous Flow Synthesis of Imatinib and Analogues. Organic Letters, 2019, 21, 6112-6116.	2.4	36
24	Total Synthesis of the Marine Ladder Polyether Gymnocin B. Journal of the American Chemical Society, 2019, 141, 11239-11244.	6.6	39
25	Continuous Flow Synthesis of ACE Inhibitors From Nâ€Substituted I â€Alanine Derivatives. Chemistry - A European Journal, 2019, 25, 14527-14531.	1.7	9
26	Diazotization of <i>S</i> -Sulfonyl-cysteines. Journal of Organic Chemistry, 2019, 84, 15001-15007.	1.7	8
27	Synthesis of the <i>EFG</i> Framework of Tamulamides A and B. Organic Letters, 2019, 21, 8027-8030.	2.4	0
28	A graph-convolutional neural network model for the prediction of chemical reactivity. Chemical Science, 2019, 10, 370-377.	3.7	430
29	Automated On-Demand Titration of Organometallic Reagents in Continuous Flow. Organic Process Research and Development, 2019, 23, 278-282.	1.3	6
30	Ni-Catalyzed Cross-Electrophile Coupling for the Synthesis of Skipped Polyenes. Organic Letters, 2019, 21, 3606-3609.	2.4	24
31	Sevenâ€Step Continuous Flow Synthesis of Linezolid Without Intermediate Purification. Angewandte Chemie, 2019, 131, 7760-7763.	1.6	8
32	Sevenâ€Step Continuous Flow Synthesis of Linezolid Without Intermediate Purification. Angewandte Chemie - International Edition, 2019, 58, 7678-7681.	7.2	68
33	Catalytic Generation and Use of Ketyl Radical from Unactivated Aliphatic Carbonyl Compounds. Organic Letters, 2019, 21, 10159-10163.	2.4	31
34	Using Carbon Dioxide as a Building Block in Continuous Flow Synthesis. Advanced Synthesis and Catalysis, 2019, 361, 247-264.	2.1	64
35	Studies toward brevisulcenal F via convergent strategies for marine ladder polyether synthesis. Tetrahedron, 2018, 74, 1111-1122.	1.0	6
36	Advanced Continuous Flow Platform for Onâ€Demand Pharmaceutical Manufacturing. Chemistry - A European Journal, 2018, 24, 2776-2784.	1.7	81

#	Article	IF	Citations
37	Ni-Catalyzed Electrochemical Decarboxylative C–C Couplings in Batch and Continuous Flow. Organic Letters, 2018, 20, 1338-1341.	2.4	126
38	Benchâ€Stable <i>N</i> à€Heterocyclic Carbene Nickel Precatalysts for Câ^'C and Câ^'N Bondâ€Forming Reactions. ChemCatChem, 2018, 10, 2873-2877.	1.8	29
39	Synthesis of the ABC framework of tamulamides A and B. Bioorganic and Medicinal Chemistry, 2018, 26, 5327-5335.	1.4	3
40	Selective N-monomethylation of primary anilines with dimethyl carbonate in continuous flow. Tetrahedron, 2018, 74, 3124-3128.	1.0	16
41	Reconfigurable system for automated optimization of diverse chemical reactions. Science, 2018, 361, 1220-1225.	6.0	339
42	7â€6tep Flow Synthesis of the HIV Integrase Inhibitor Dolutegravir. Angewandte Chemie, 2018, 130, 7299-7303.	1.6	11
43	Xenoprotein engineering via synthetic libraries. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5298-E5306.	3.3	36
44	Synthesis of Highly Substituted 2-Arylindoles via Copper-Catalyzed Coupling of Isocyanides and Arylboronic Acids. Organic Letters, 2018, 20, 3263-3267.	2.4	26
45	7â€Step Flow Synthesis of the HIV Integrase Inhibitor Dolutegravir. Angewandte Chemie - International Edition, 2018, 57, 7181-7185.	7.2	80
46	Bench-Stable Nickel Precatalysts with Heck-type Activation. Organometallics, 2018, 37, 2716-2722.	1.1	28
47	Continuous-Flow Chemistry in Undergraduate Education: Sustainable Conversion of Reclaimed Vegetable Oil into Biodiesel. Journal of Chemical Education, 2018, 95, 1371-1375.	1.1	27
48	Electrochemically Mediated Reduction of Nitrosamines by Hemin-Functionalized Redox Electrodes. Environmental Science and Technology Letters, 2017, 4, 161-167.	3.9	36
49	Minimizing E-factor in the continuous-flow synthesis of diazepam and atropine. Bioorganic and Medicinal Chemistry, 2017, 25, 6233-6241.	1.4	56
50	Towards More Efficient, Greener Syntheses through Flow Chemistry. Chemical Record, 2017, 17, 667-680.	2.9	68
51	Asymmetric Faradaic systems for selective electrochemical separations. Energy and Environmental Science, 2017, 10, 1272-1283.	15.6	143
52	Redox Interfaces for Electrochemically Controlled Protein–Surface Interactions: Bioseparations and Heterogeneous Enzyme Catalysis. Chemistry of Materials, 2017, 29, 5702-5712.	3.2	35
53	A Rapid Total Synthesis of Ciprofloxacin Hydrochloride in Continuous Flow. Angewandte Chemie, 2017, 129, 8996-8999.	1.6	19
54	A Unified Continuous Flow Assemblyâ€Line Synthesis of Highly Substituted Pyrazoles and Pyrazolines. Angewandte Chemie - International Edition, 2017, 56, 8823-8827.	7.2	133

#	Article	IF	CITATIONS
55	A Rapid Total Synthesis of Ciprofloxacin Hydrochloride in Continuous Flow. Angewandte Chemie - International Edition, 2017, 56, 8870-8873.	7.2	98
56	Photoredox activation of carbon dioxide for amino acid synthesis in continuous flow. Nature Chemistry, 2017, 9, 453-456.	6.6	330
57	The assembly and use of continuous flow systems for chemical synthesis. Nature Protocols, 2017, 12, 2423-2446.	5.5	92
58	Synthesis and Utilization of Nitroalkyne Equivalents in Batch and Continuous Flow. Angewandte Chemie, 2017, 129, 14187-14190.	1.6	7
59	Direct \hat{l}^2 -Selective Hydrocarboxylation of Styrenes with CO ₂ Enabled by Continuous Flow Photoredox Catalysis. Journal of the American Chemical Society, 2017, 139, 13969-13972.	6.6	202
60	Synthesis of Celecoxib, Mavacoxib, SCâ€560, Fluxapyroxad, and Bixafen Enabled by Continuous Flow Reaction Modules. European Journal of Organic Chemistry, 2017, 2017, 6566-6574.	1.2	50
61	Synthesis and Utilization of Nitroalkyne Equivalents in Batch and Continuous Flow. Angewandte Chemie - International Edition, 2017, 56, 13999-14002.	7.2	21
62	Flow-IEG enables programmable thermodynamic properties in sequence-defined unimolecular macromolecules. Polymer Chemistry, 2017, 8, 5786-5794.	1.9	23
63	A Unified Continuous Flow Assemblyâ€Line Synthesis of Highly Substituted Pyrazoles and Pyrazolines. Angewandte Chemie, 2017, 129, 8949-8953.	1.6	37
64	Enhanced Reaction Efficiency in Continuous Flow. Israel Journal of Chemistry, 2017, 57, 218-227.	1.0	48
65	Anionâ€Selective Redox Electrodes: Electrochemically Mediated Separation with Heterogeneous Organometallic Interfaces. Advanced Functional Materials, 2016, 26, 3394-3404.	7.8	106
66	Redox Electrodes: Anion-Selective Redox Electrodes: Electrochemically Mediated Separation with Heterogeneous Organometallic Interfaces (Adv. Funct. Mater. 20/2016). Advanced Functional Materials, 2016, 26, 3552-3552.	7.8	0
67	Confining a biocatalyst for highly efficient and selective synthesis of carboxamide derivatives under continuous-flow conditions. Journal of Flow Chemistry, 2016, 6, 67-72.	1.2	7
68	On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system. Science, 2016, 352, 61-67.	6.0	751
69	Photoredox Activation of SF ₆ for Fluorination. Angewandte Chemie, 2016, 128, 15296-15299.	1.6	35
70	Photoredox Activation of SF ₆ for Fluorination. Angewandte Chemie - International Edition, 2016, 55, 15072-15075.	7.2	86
71	Stereoselective Formation of Fully Substituted Ketone Enolates. Angewandte Chemie - International Edition, 2016, 55, 5517-5520.	7.2	23
72	Continuous-flow synthesis and purification of atropine with sequential in-line separations of structurally similar impurities. Journal of Flow Chemistry, 2015, 5, 133-138.	1.2	46

#	Article	IF	CITATIONS
73	Rhodium-Catalyzed <i>Endo</i> -Selective Epoxide-Opening Cascades: Formal Synthesis of (â^²)-Brevisin. Journal of the American Chemical Society, 2015, 137, 6941-6946.	6.6	41
74	Selective Lewis Acid Catalyzed Assembly of Phosphonomethyl Ethers: Three-Step Synthesis of Tenofovir. Organic Letters, 2015, 17, 820-823.	2.4	6
75	Hydroxyl-Substituted Ladder Polyethers via Selective Tandem Epoxidation/Cyclization Sequence. Organic Letters, 2015, 17, 774-777.	2.4	13
76	Electrophilic Amination: The Case of Nitrenoids. Chemistry - A European Journal, 2015, 21, 5278-5300.	1.7	68
77	Highly Regioselective Indoline Synthesis under Nickel/Photoredox Dual Catalysis. Journal of the American Chemical Society, 2015, 137, 9531-9534.	6.6	172
78	Nickel Catalysis: Synergy between Method Development and Total Synthesis. Accounts of Chemical Research, 2015, 48, 1503-1514.	7.6	173
79	A General Strategy for the Synthesis of Enantiomerically Pure Azetidines and Aziridines through Nickelâ€Catalyzed Crossâ€Coupling. Chemistry - A European Journal, 2015, 21, 7379-7383.	1.7	30
80	Scalable synthesis of sequence-defined, unimolecular macromolecules by Flow-IEG. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10617-10622.	3.3	161
81	Iterative exponential growth of stereo- and sequence-controlled polymers. Nature Chemistry, 2015, 7, 810-815.	6.6	296
82	A Threeâ€Minute Synthesis and Purification of Ibuprofen: Pushing the Limits of Continuousâ€Flow Processing. Angewandte Chemie - International Edition, 2015, 54, 983-987.	7.2	176
83	Continuous Flow Synthesis of Chiral Amines in Organic Solvents: Immobilization of <i>E. coli</i> Cells Containing Both I‰-Transaminase and PLP. Organic Letters, 2014, 16, 6092-6095.	2.4	107
84	Development of a Multi-Step Synthesis and Workup Sequence for an Integrated, Continuous Manufacturing Process of a Pharmaceutical. Organic Process Research and Development, 2014, 18, 402-409.	1.3	143
85	Continuousâ€Flow Synthesis of Functionalized Phenols by Aerobic Oxidation of Grignard Reagents. Angewandte Chemie - International Edition, 2014, 53, 3353-3357.	7.2	125
86	Nickelâ€Catalyzed Mizoroki–Heck Reaction of Aryl Sulfonates and Chlorides with Electronically Unbiased Terminal Olefins: High Selectivity for Branched Products. Angewandte Chemie - International Edition, 2014, 53, 1858-1861.	7.2	107
87	A Broadly Applicable Strategy for Entry into Homogeneous Nickel(0) Catalysts from Air-Stable Nickel(II) Complexes. Organometallics, 2014, 33, 2012-2018.	1.1	163
88	Recent advances in homogeneous nickel catalysis. Nature, 2014, 509, 299-309.	13.7	1,780
89	Continuous Flow Total Synthesis of Rufinamide. Organic Process Research and Development, 2014, 18, 1567-1570.	1.3	118
90	Highly Regioselective Nickel-Catalyzed Cross-Coupling of <i>N</i> -Tosylaziridines and Alkylzinc Reagents. Journal of the American Chemical Society, 2014, 136, 11145-11152.	6.6	97

#	Article	IF	Citations
91	Mechanism-guided design of flow systems for multicomponent reactions: conversion of CO2 and olefins to cyclic carbonates. Chemical Science, 2014, 5, 1227.	3.7	55
92	Endâ€toâ€End Continuous Manufacturing of Pharmaceuticals: Integrated Synthesis, Purification, and Final Dosage Formation. Angewandte Chemie - International Edition, 2013, 52, 12359-12363.	7.2	505
93	Bromine-Catalyzed Conversion of CO ₂ and Epoxides to Cyclic Carbonates under Continuous Flow Conditions. Journal of the American Chemical Society, 2013, 135, 18497-18501.	6.6	130
94	A Dioxane Template for Highly Selective Epoxy Alcohol Cyclizations. Chemistry - A European Journal, 2013, 19, 10004-10016.	1.7	22
95	Simplifying Nickel(0) Catalysis: An Air-Stable Nickel Precatalyst for the Internally Selective Benzylation of Terminal Alkenes. Journal of the American Chemical Society, 2013, 135, 1585-1592.	6.6	160
96	Peptide Fragment Coupling Using a Continuousâ€Flow Photochemical Rearrangement of Nitrones. Angewandte Chemie - International Edition, 2013, 52, 4251-4255.	7.2	50
97	End-to-end continuous flow synthesis and purification of diphenhydramine hydrochloride featuring atom economy, in-line separation, and flow of molten ammonium salts. Chemical Science, 2013, 4, 2822.	3.7	94
98	Total syntheses of the squalene-derived halogenated polyethers ent -dioxepandehydrothyrsiferol and armatol A via bromonium- and Lewis acid-initiated epoxide-opening cascades. Tetrahedron, 2013, 69, 5205-5220.	1.0	23
99	Hydrogen-Free Alkene Reduction in Continuous Flow. Organic Letters, 2013, 15, 710-713.	2.4	58
100	Entropic factors provide unusual reactivity and selectivity in epoxide-opening reactions promoted by water. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16724-16729.	3.3	34
101	A reductive coupling strategy towards ripostatin A. Beilstein Journal of Organic Chemistry, 2013, 9, 1533-1550.	1.3	9
102	Scalable and Robust Synthesis of CpRu(MeCN) ₃ PF ₆ via Continuous Flow Photochemistry. Journal of Flow Chemistry, 2012, 1, 24-27.	1.2	38
103	Rapid Continuous Synthesis of 5′-Deoxyribonucleosides in Flow via Brønsted Acid Catalyzed Glycosylation. Organic Letters, 2012, 14, 3348-3351.	2.4	42
104	Continuous flow photocatalysis enhanced using an aluminum mirror: rapid and selective synthesis of $2\hat{a}\in^2$ -deoxy and $2\hat{a}\in^2$ -dideoxynucleosides. Chemical Communications, 2012, 48, 7444.	2.2	40
105	Recent progress in the synthesis of oxepanes and medium ring ethers. Tetrahedron, 2012, 68, 6999-7018.	1.0	68
106	Mixing and Dispersion in Small-Scale Flow Systems. Organic Process Research and Development, 2012, 16, 976-981.	1.3	144
107	Continuous Flow Oxidation of Alcohols and Aldehydes Utilizing Bleach and Catalytic Tetrabutylammonium Bromide. Organic Process Research and Development, 2012, 16, 1082-1089.	1.3	64
108	Diisobutylaluminum Hydride Reductions Revitalized: A Fast, Robust, and Selective Continuous Flow System for Aldehyde Synthesis. Organic Letters, 2012, 14, 568-571.	2.4	88

#	Article	IF	CITATIONS
109	A Continuous Homologation of Esters: An Efficient Telescoped Reduction–Olefination Sequence. Organic Letters, 2012, 14, 2465-2467.	2.4	30
110	Ni(II) Salts and 2-Propanol Effect Catalytic Reductive Coupling of Epoxides and Alkynes. Organic Letters, 2011, 13, 4140-4143.	2.4	56
111	Evidence That Epoxide-Opening Cascades Promoted by Water Are Stepwise and Become Faster and More Selective After the First Cyclization. Journal of the American Chemical Society, 2011, 133, 1902-1908.	6.6	41
112	Continuous Flow Coupling and Decarboxylation Reactions Promoted by Copper Tubing. Organic Letters, 2011, 13, 280-283.	2.4	76
113	Kinetic and Scale-Up Investigations of Epoxide Aminolysis in Microreactors at High Temperatures and Pressures. Organic Process Research and Development, 2011, 15, 131-139.	1.3	83
114	Nickel-Catalyzed Heck-Type Reactions of Benzyl Chlorides and Simple Olefins. Journal of the American Chemical Society, 2011, 133, 19020-19023.	6.6	153
115	Continuous Photochemical Generation of Catalytically Active [CpRu] ⁺ Complexes from CpRu(Î- ⁶ -C ₆ H ₆)PF ₆ . Organic Letters, 2011, 13, 6414-6417.	2.4	66
116	Safe and Efficient Tetrazole Synthesis in a Continuousâ€Flow Microreactor. Angewandte Chemie - International Edition, 2011, 50, 3525-3528.	7.2	114
117	Synthesis of Marine Polycyclic Polyethers via Endo-Selective Epoxide-Opening Cascades. Marine Drugs, 2010, 8, 763-809.	2.2	75
118	Origins of Regioselectivity and Alkene-Directing Effects in Nickel-Catalyzed Reductive Couplings of Alkynes and Aldehydes. Journal of the American Chemical Society, 2010, 132, 2050-2057.	6.6	109
119	Continuous flow multi-step organic synthesis. Chemical Science, 2010, 1, 675.	3.7	611
120	Amide Bond Formation via Reversible, Carboxylic Acid-Promoted Lactone Aminolysis. Organic Process Research and Development, 2010, 14, 1177-1181.	1.3	25
121	Ladder Polyether Synthesis via Epoxide-Opening Cascades Directed by a Disappearing Trimethylsilyl Group. Journal of Organic Chemistry, 2010, 75, 2681-2701.	1.7	26
122	Aminolysis of Epoxides in a Microreactor System: A Continuous Flow Approach to \hat{l}^2 -Amino Alcohols. Organic Process Research and Development, 2010, 14, 432-440.	1.3	127
123	Nickel-Catalyzed Allylic Substitution of Simple Alkenes. Journal of the American Chemical Society, 2010, 132, 6880-6881.	6.6	124
124	Catalytic Addition of Simple Alkenes to Carbonyl Compounds by Use of Group 10 Metals. Synlett, 2009, 2009, 2565-2582.	1.0	39
125	Epoxideâ€Opening Cascades in the Synthesis of Polycyclic Polyether Natural Products. Angewandte Chemie - International Edition, 2009, 48, 5250-5281.	7.2	203
126	Functionalized Templates for the Convergent Assembly of Polyethers: Synthesis of the HIJK Rings of Gymnocinâ€A. Angewandte Chemie - International Edition, 2009, 48, 4430-4432.	7.2	46

#	Article	IF	Citations
127	Macrocyclization by Nickelâ€Catalyzed, Esterâ€Promoted, Epoxide–Alkyne Reductive Coupling: Total Synthesis of (â^')â€Gloeosporone. Angewandte Chemie - International Edition, 2009, 48, 5366-5368.	7.2	32
128	Strategic use of nickel(0)-catalyzed enyne–epoxide reductive coupling toward the synthesis of (â^')-cyatha-3,12-diene. Tetrahedron, 2009, 65, 3270-3280.	1.0	15
129	New synthetic strategies for the stereocontrolled synthesis of substituted â€~skipped' diepoxides. Tetrahedron, 2009, 65, 6648-6655.	1.0	9
130	The development of endo-selective epoxide-opening cascades in water. Chemical Society Reviews, 2009, 38, 3175.	18.7	97
131	On the Synergism Between H2O and a Tetrahydropyran Template in the Regioselective Cyclization of an Epoxy Alcohol. Journal of the American Chemical Society, 2009, 131, 6383-6385.	6.6	47
132	Total Synthesis of <i>ent</i> -Dioxepandehydrothyrsiferol via a Bromonium-Initiated Epoxide-Opening Cascade. Journal of the American Chemical Society, 2009, 131, 12084-12085.	6.6	83
133	Water Overcomes Methyl Group Directing Effects in Epoxide-Opening Cascades. Journal of the American Chemical Society, 2009, 131, 6678-6679.	6.6	56
134	Mechanism and Transition-State Structures for Nickel-Catalyzed Reductive Alkyneâ^'Aldehyde Coupling Reactions. Journal of the American Chemical Society, 2009, 131, 6654-6655.	6.6	94
135	αâ€Olefins as Alkenylmetal Equivalents in Catalytic Conjugate Addition Reactions. Angewandte Chemie - International Edition, 2008, 47, 1893-1895.	7.2	71
136	Sml ₂ -Promoted Reformatsky-Type Coupling Reactions in Exceptionally Hindered Contexts. Organic Letters, 2008, 10, 1291-1294.	2.4	34
137	Nickel-catalyzed coupling reactions of alkenes. Pure and Applied Chemistry, 2008, 80, 929-939.	0.9	53
138	Total Synthesis of Pumiliotoxins 209F and 251D via Late-Stage, Nickel-Catalyzed Epoxideâ^'Alkyne Reductive Cyclization. Journal of Organic Chemistry, 2007, 72, 7451-7454.	1.7	27
139	Epoxide-Opening Cascades Promoted by Water. Science, 2007, 317, 1189-1192.	6.0	254
140	Total Synthesis of (+)-Acutiphycin. Journal of Organic Chemistry, 2007, 72, 9736-9745.	1.7	31
141	Nickel-Catalyzed Synthesis of Acrylamides from α-Olefins and Isocyanates. Organic Letters, 2007, 9, 875-878.	2.4	68
142	Highly Selective Coupling of Alkenes and Aldehydes Catalyzed by [Ni(NHC){P(OPh)3}]: Synergy between a Strong Ïfâ€Donor and a Strong Ï€â€Acceptor. Angewandte Chemie - International Edition, 2007, 46, 782-78	35 ^{7.2}	117
143	Highly Convergent Total Synthesis of (+)-Acutiphycin. Journal of the American Chemical Society, 2006, 128, 15106-15107.	6.6	50
144	Ladder Polyether Synthesis via Epoxide-Opening Cascades Using a Disappearing Directing Group. Journal of the American Chemical Society, 2006, 128, 1056-1057.	6.6	71

#	Article	IF	Citations
145	Nickel-Catalyzed Coupling of Alkenes, Aldehydes, and Silyl Triflates. Journal of the American Chemical Society, 2006, 128, 11513-11528.	6.6	88
146	Nickel-Catalyzed, Carbonyl-Ene-Type Reactions:Â Selective for Alpha Olefins and More Efficient with Electron-Rich Aldehydes. Journal of the American Chemical Society, 2006, 128, 5362-5363.	6.6	51
147	trans-Hydroalumination/Alkylation:  One-Pot Synthesis of Trisubstituted Allylic Alcohols. Organic Letters, 2006, 8, 3761-3764.	2.4	36
148	Mechanistic Implications of Nickel-Catalyzed Reductive Coupling of Aldehydes and Chiral 1,6-Enynes. Organic Letters, 2006, 8, 455-458.	2.4	54
149	Directing effects of tethered alkenes in nickel-catalyzed coupling reactions of 1,6-enynes and aldehydes. Tetrahedron, 2006, 62, 7598-7610.	1.0	38
150	Nickel-catalyzed coupling of terminal allenes, aldehydes, and silanes. Tetrahedron, 2006, 62, 11350-11359.	1.0	53
151	Synthesis of C13–C22 of amphidinolide T2 via nickel-catalyzed reductive coupling of an alkyne and a terminal epoxide. Tetrahedron, 2005, 61, 6243-6248.	1.0	30
152	Enantioselective and regioselective nickel-catalyzed multicomponent coupling of chiral allenes, aromatic aldehydes, and silanes. Tetrahedron, 2005, 61, 11405-11417.	1.0	54
153	A comparative analysis of the total syntheses of the amphidinolide T natural products. Organic and Biomolecular Chemistry, 2005, 3, 2675.	1.5	38
154	Total Syntheses of Amphidinolides T1 and T4 via Catalytic, Stereoselective, Reductive Macrocyclizations. Journal of the American Chemical Society, 2005, 127, 4297-4307.	6.6	105
155	Simple Alkenes as Substitutes for Organometallic Reagents:Â Nickel-Catalyzed, Intermolecular Coupling of Aldehydes, Silyl Triflates, and Alpha Olefins. Journal of the American Chemical Society, 2005, 127, 14194-14195.	6.6	81
156	anti-1,2-Diols via Ni-Catalyzed Reductive Coupling of Alkynes and α-Oxyaldehydes. Organic Letters, 2005, 7, 2937-2940.	2.4	67
157	Highly Enantioselective and Regioselective Nickel-Catalyzed Coupling of Allenes, Aldehydes, and Silanes. Journal of the American Chemical Society, 2005, 127, 7320-7321.	6.6	137
158	Highly Regioselective, Catalytic Asymmetric Reductive Coupling of 1,3-Enynes and Ketones. Organic Letters, 2005, 7, 3077-3080.	2.4	97
159	Asymmetric Catalytic Coupling of Organoboranes, Alkynes, and Imines with a Removable (Trialkylsilyloxy)ethyl Group—Direct Access to Enantiomerically Pure Primary Allylic Amines. Angewandte Chemie - International Edition, 2004, 43, 3941-3944.	7.2	151
160	Synthesis of Amphidinolide T1 via Catalytic, Stereoselective Macrocyclization. Journal of the American Chemical Society, 2004, 126, 998-999.	6.6	97
161	Ligand-Switchable Directing Effects of Tethered Alkenes in Nickel-Catalyzed Additions to Alkynes. Journal of the American Chemical Society, 2004, 126, 15342-15343.	6.6	105
162	Enantioselective Synthesis of (â^')-Terpestacin and Structural Revision of Siccanol Using Catalytic Stereoselective Fragment Couplings and Macrocyclizations. Journal of the American Chemical Society, 2004, 126, 10682-10691.	6.6	102

#	Article	IF	CITATIONS
163	Alkene-Directed, Nickel-Catalyzed Alkyne Coupling Reactions. Journal of the American Chemical Society, 2004, 126, 4130-4131.	6.6	153
164	Synthesis of skipped enynes via phosphine-promoted couplings of propargylcopper reagents. Tetrahedron, 2003, 59, 8913-8917.	1.0	28
165	Catalytic Three-Component Coupling of Alkynes, Imines, and Organoboron Reagents. Angewandte Chemie - International Edition, 2003, 42, 1364-1367.	7.2	190
166	Catalytic reductive carbonî—,carbon bond-forming reactions of alkynes. Tetrahedron: Asymmetry, 2003, 14, 3619-3625.	1.8	51
167	P-Chiral, Monodentate Ferrocenyl Phosphines, Novel Ligands for Asymmetric Catalysisâ€. Journal of Organic Chemistry, 2003, 68, 156-166.	1.7	135
168	Catalytic Asymmetric Reductive Coupling of Alkynes and Aldehydes: Enantioselective Synthesis of Allylic Alcohols and α-Hydroxy Ketones. Journal of the American Chemical Society, 2003, 125, 3442-3443.	6.6	265
169	Nickel-Catalyzed Reductive Coupling of Alkynes and Epoxides. Journal of the American Chemical Society, 2003, 125, 8076-8077.	6.6	132
170	SiMe3-Based Homologationâ^Epoxidationâ^Cyclization Strategy for Ladder THP Synthesis. Organic Letters, 2003, 5, 2339-2342.	2.4	82
171	Synthesis of (â^')-Terpestacin via Catalytic, Stereoselective Fragment Coupling:Â Siccanol Is Terpestacin, Not 11-epi-Terpestacin. Journal of the American Chemical Society, 2003, 125, 11514-11515.	6.6	74
172	Cobalt Cluster-Containing Carbonyl Ylides for Catalytic, Three-Component Assembly of Oxygen Heterocycles. Organic Letters, 2002, 4, 2277-2280.	2.4	40
173	FR901464:Â Total Synthesis, Proof of Structure, and Evaluation of Synthetic Analogues. Journal of the American Chemical Society, 2001, 123, 9974-9983.	6.6	136
174	Highly Selective Catalytic Intermolecular Reductive Coupling of Alkynes and Aldehydes. Organic Letters, 2000, 2, 4221-4223.	2.4	176
175	Total Synthesis of FR901464. Convergent Assembly of Chiral Components Prepared by Asymmetric Catalysis. Journal of the American Chemical Society, 2000, 122, 10482-10483.	6.6	76
176	Highly Enantio- and Diastereoselective Hetero-Diels-Alder Reactions Catalyzed by New Chiral Tridentate Chromium(III) Catalysts. Angewandte Chemie - International Edition, 1999, 38, 2398-2400.	7.2	286
177	Combinatorial libraries of transition-metal complexes, catalysts and materials. Current Opinion in Chemical Biology, 1998, 2, 422-428.	2.8	106
178	Tandem Use of Cobalt-Mediated Reactions to Synthesize (+)-Epoxydictymene, a Diterpene Containing aTrans-Fused 5â^25 Ring System. Journal of the American Chemical Society, 1997, 119, 4353-4363.	6.6	144
179	Understanding and controlling the cell cycle with natural products. Chemistry and Biology, 1996, 3, 623-639.	6.2	170
180	Cobalt-Mediated Total Synthesis of (+)-Epoxydictymene. Journal of the American Chemical Society, 1994, 116, 5505-5506.	6.6	115

#	Article	IF	CITATIONS
181	N-(9-phenylfluoren-9-yl)alphaamino ketones and N-(9-phenylfluoren-9-yl)alphaamino aldehydes as chiral educts for the synthesis of optically pure 4-alkyl-3-hydroxy-2-amino acids. Synthesis of the C-9 amino acid MeBmt present in cyclosporin. Journal of Organic Chemistry, 1990, 55, 3511-3522.	1.7	69