Jennifer Lippincott-Schwartz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6511642/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ER proteins decipher the tubulin code to regulate organelle distribution. Nature, 2022, 601, 132-138.	27.8	75
2	Targeting LIPA independent of its lipase activity is a therapeutic strategy in solid tumors via induction of endoplasmic reticulum stress. Nature Cancer, 2022, 3, 866-884.	13.2	8
3	Unraveling trajectories of diffusive particles on networks. Physical Review Research, 2022, 4, .	3.6	6
4	RNA transport and local translation in neurodevelopmental and neurodegenerative disease. Nature Neuroscience, 2021, 24, 622-632.	14.8	82
5	Actin cables and comet tails organize mitochondrial networks in mitosis. Nature, 2021, 591, 659-664.	27.8	92
6	ER-to-Golgi protein delivery through an interwoven, tubular network extending from ER. Cell, 2021, 184, 2412-2429.e16.	28.9	152
7	A General Method to Improve Fluorophores Using Deuterated Auxochromes. Jacs Au, 2021, 1, 690-696.	7.9	106
8	Lipid droplets in the nervous system. Journal of Cell Biology, 2021, 220, .	5.2	82
9	YAP1 nuclear efflux and transcriptional reprograming follow membrane diminution upon VSV-G-induced cell fusion. Nature Communications, 2021, 12, 4502.	12.8	5
10	Biomolecular Condensates and Their Links to Cancer Progression. Trends in Biochemical Sciences, 2021, 46, 535-549.	7.5	51
11	Activity-dependent Golgi satellite formation in dendrites reshapes the neuronal surface glycoproteome. ELife, 2021, 10, .	6.0	23
12	Image-based pooled whole-genome CRISPRi screening for subcellular phenotypes. Journal of Cell Biology, 2021, 220, .	5.2	48
13	Whole-cell organelle segmentation in volume electron microscopy. Nature, 2021, 599, 141-146.	27.8	127
14	An open-access volume electron microscopy atlas of whole cells and tissues. Nature, 2021, 599, 147-151.	27.8	80
15	Revisiting Membrane Microdomains and Phase Separation: A Viral Perspective. Viruses, 2020, 12, 745.	3.3	21
16	The evolution of a cell biologist. Molecular Biology of the Cell, 2020, 31, 2763-2767.	2.1	0
17	A general method to optimize and functionalize red-shifted rhodamine dyes. Nature Methods, 2020, 17, 815-821.	19.0	155
18	Mechanisms of procollagen and HSP47 sorting during ER-to-Golgi trafficking. Matrix Biology, 2020, 93, 79-94.	3.6	25

#	Article	IF	CITATIONS
19	ER membranes exhibit phase behavior at sites of organelle contact. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7225-7235.	7.1	117
20	Correlative three-dimensional super-resolution and block-face electron microscopy of whole vitreously frozen cells. Science, 2020, 367, .	12.6	255
21	In situ differentiation of iridophore crystallotypes underlies zebrafish stripe patterning. Nature Communications, 2020, 11, 6391.	12.8	35
22	A Neuronâ€Glia Coâ€culture System for Studying Intercellular Lipid Transport. Current Protocols in Cell Biology, 2019, 84, e95.	2.3	18
23	Rational Design of Fluorogenic and Spontaneously Blinking Labels for Super-Resolution Imaging. ACS Central Science, 2019, 5, 1602-1613.	11.3	159
24	RNA Granules Hitchhike on Lysosomes for Long-Distance Transport, Using Annexin A11 as a Molecular Tether. Cell, 2019, 179, 147-164.e20.	28.9	327
25	Spastin tethers lipid droplets to peroxisomes and directs fatty acid trafficking through ESCRT-III. Journal of Cell Biology, 2019, 218, 2583-2599.	5.2	139
26	Fate plasticity and reprogramming in genetically distinct populations of <i>Danio</i> leucophores. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11806-11811.	7.1	49
27	NDP52 tunes cortical actin interaction with astral microtubules for accurate spindle orientation. Cell Research, 2019, 29, 666-679.	12.0	13
28	Neuron-Astrocyte Metabolic Coupling Protects against Activity-Induced Fatty Acid Toxicity. Cell, 2019, 177, 1522-1535.e14.	28.9	350
29	De novo design of tunable, pH-driven conformational changes. Science, 2019, 364, 658-664.	12.6	109
30	A lipid-based partitioning mechanism for selective incorporation of proteins into membranes of HIV particles. Nature Cell Biology, 2019, 21, 452-461.	10.3	97
31	Phase separation of YAP reorganizes genome topology for long-term YAP target gene expression. Nature Cell Biology, 2019, 21, 1578-1589.	10.3	237
32	Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution. Science, 2019, 363, .	12.6	277
33	VPS4 is a dynamic component of the centrosome that regulates centrosome localization of γ-tubulin, centriolar satellite stability and ciliogenesis. Scientific Reports, 2018, 8, 3353.	3.3	21
34	MYC Induces a Hybrid Energetics Program Early in Cell Reprogramming. Stem Cell Reports, 2018, 11, 1479-1492.	4.8	31
35	Noncanonical autophagy at ER exit sites regulates procollagen turnover. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10099-E10108.	7.1	136
36	Visualizing Intracellular Organelle and Cytoskeletal Interactions at Nanoscale Resolution on Millisecond Timescales. Cell, 2018, 175, 1430-1442.e17.	28.9	427

#	Article	IF	CITATIONS
37	The Development and Enhancement of FRAP as a Key Tool for Investigating Protein Dynamics. Biophysical Journal, 2018, 115, 1146-1155.	0.5	53
38	Multispectral Live ell Imaging. Current Protocols in Cell Biology, 2018, 79, e46.	2.3	27
39	Monitoring the Effects of Pharmacological Reagents on Mitochondrial Morphology. Current Protocols in Cell Biology, 2018, 79, e45.	2.3	16
40	Interacting organelles. Current Opinion in Cell Biology, 2018, 53, 84-91.	5.4	201
41	mTOR-dependent phosphorylation controls TFEB nuclear export. Nature Communications, 2018, 9, 3312.	12.8	271
42	Triggered Cellâ€Cell Fusion Assay for Cytoplasmic and Organelle Intermixing Studies. Current Protocols in Cell Biology, 2018, 81, e61.	2.3	3
43	Myosin VI facilitates connexin 43 gap junction accretion. Journal of Cell Science, 2017, 130, 827-840.	2.0	14
44	The nanoscale spatial organization of B-cell receptors on immunoglobulin M– and G–expressing human B-cells. Molecular Biology of the Cell, 2017, 28, 511-523.	2.1	40
45	Live cell single molecule-guided Bayesian localization super resolution microscopy. Cell Research, 2017, 27, 713-716.	12.0	23
46	Applying systems-level spectral imaging and analysis to reveal the organelle interactome. Nature, 2017, 546, 162-167.	27.8	828
47	Defects in ER–endosome contacts impact lysosome function in hereditary spastic paraplegia. Journal of Cell Biology, 2017, 216, 1337-1355.	5.2	136
48	Sonic hedgehog pathway activation increases mitochondrial abundance and activity in hippocampal neurons. Molecular Biology of the Cell, 2017, 28, 387-395.	2.1	39
49	Cell volume change through water efflux impacts cell stiffness and stem cell fate. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8618-E8627.	7.1	362
50	Cortical actin recovery at the immunological synapse leads to termination of lytic granule secretion in cytotoxic T lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6585-E6594.	7.1	75
51	Rational Engineering of Photoconvertible Fluorescent Proteins for Dualâ€Color Fluorescence Nanoscopy Enabled by a Tripletâ€State Mechanism of Primed Conversion. Angewandte Chemie, 2017, 129, 11786-11791.	2.0	6
52	Immature HIV-1 lattice assembly dynamics are regulated by scaffolding from nucleic acid and the plasma membrane. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10056-E10065.	7.1	86
53	Rational Engineering of Photoconvertible Fluorescent Proteins for Dualâ€Color Fluorescence Nanoscopy Enabled by a Tripletâ€State Mechanism of Primed Conversion. Angewandte Chemie - International Edition, 2017, 56, 11628-11633.	13.8	41
54	Membrane dynamics and organelle biogenesis—lipid pipelines and vesicular carriers. BMC Biology, 2017, 15, 102.	3.8	63

IF # ARTICLE CITATIONS AMPK and vacuole-associated Atg14p orchestrate 14/4-lipophagy for energy production and long-term 138 survival under glucose starvation. ELife, 2017, 6, . AMPK Activation Prevents and Reverses Drug-Induced Mitochondrial and Hepatocyte Injury by 56 2.5 81 Promoting Mitochondrial Fusion and Function. PLoS ONE, 2016, 11, e0165638. Fas/CD95 prevents autoimmunity independently of lipid raft localization and efficient apoptosis 12.8 induction. Nature Communications, 2016, 7, 13895. Bright photoactivatable fluorophores for single-molecule imaging. Nature Methods, 2016, 13, 985-988. 58 19.0 338 Increased spatiotemporal resolution reveals highly dynamic dense tubular matrices in the peripheral 12.6 361 ER. Science, 2016, 354, . Intravital Imaging Reveals Ghost Fibers as Architectural Units Guiding Myogenic Progenitors during 60 11.1 185 Regeneration. Cell Stem Cell, 2016, 18, 243-252. Dynamin regulates metaphase furrow formation and plasma membrane compartmentalization in the 1.2 23 sýncytial <i>Drosophila</i> embryo. Biology Open, 2015, 4, 301-311. Actin Depletion Initiates Events Leading to Granule Secretion at the Immunological Synapse. Immunity, 62 14.3271 2015, 42, 864-876. Dendrosomatic Sonic Hedgehog Signaling in Hippocampal Neurons Regulates Axon Elongation. Journal of Neuroscience, 2015, 35, 16126-16141. 3.6 ER trapping reveals Golgi enzymes continually revisit the ER through a recycling pathway that 64 controls Golgi organization. Proceedings of the National Academy of Sciences of the United States of 7.1 49 America, 2015, 112, E6752-61. Cytokinetic Abscission: Timing the Separation. Current Biology, 2015, 25, R722-R724. 3.9 Deacetylation of Nuclear LC3 Drives Autophagy Initiation under Starvation. Molecular Cell, 2015, 57, 9.7 66 525 456-466. Fatty Acid Trafficking in Starved Cells: Regulation by Lipid Droplet Lipolysis, Autophagy, and 714 Mitochondrial Fusion Dynamics. Developmental Cell, 2015, 32, 678-692. AMPK-Dependent Phosphorylation of GAPDH Triggers Sirt1 Activation and Is Necessary for Autophagy 68 9.7 222 upon Glucose Starvation. Molecular Cell, 2015, 60, 930-940. A mitochondria-anchored isoform of the actin-nucleating spire protein regulates mitochondrial 69 246 division. ELife, 2015, 4, . LKB1/AMPK and PKA Control ABCB11 Trafficking and Polarization in Hepatocytes. PLoS ONE, 2014, 9, 70 2.544 e91921. Flat clathrin lattices: stable features of the plasma membrane. Molecular Biology of the Cell, 2014, 25, 71 2.1 103 3581-3594. Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution. 72 12.6 1,567 Science, 2014, 346, 1257998.

#	Article	IF	CITATIONS
73	ER Stress-Induced Clearance of Misfolded GPI-Anchored Proteins via the Secretory Pathway. Cell, 2014, 158, 522-533.	28.9	143
74	Probing the Stochastic, Motor-Driven Properties of the Cytoplasm Using Force Spectrum Microscopy. Cell, 2014, 158, 822-832.	28.9	444
75	Distribution of ESCRT Machinery at HIV Assembly Sites Reveals Virus Scaffolding of ESCRT Subunits. Science, 2014, 343, 653-656.	12.6	165
76	Probing protein heterogeneity in the plasma membrane using PALM and pair correlation analysis. Nature Methods, 2011, 8, 969-975.	19.0	526
77	Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10190-10195.	7.1	932
78	An evolving paradigm for the secretory pathway?. Molecular Biology of the Cell, 2011, 22, 3929-3932.	2.1	11
79	The long road: peering into live cells. Nature Cell Biology, 2010, 12, 918-918.	10.3	2
80	Lipids and Cholesterol as Regulators of Traffic in the Endomembrane System. Annual Review of Biophysics, 2010, 39, 559-578.	10.0	147
81	Mitochondria Supply Membranes for Autophagosome Biogenesis during Starvation. Cell, 2010, 141, 656-667.	28.9	1,200
82	Culturing MDCK Cells in Three Dimensions for Analyzing Intracellular Dynamics. Current Protocols in Cell Biology, 2009, 43, Unit 4.22.	2.3	47
83	Photoactivatable fluorescent proteins for diffraction-limited and super-resolution imaging. Trends in Cell Biology, 2009, 19, 555-565.	7.9	303
84	Putting super-resolution fluorescence microscopy to work. Nature Methods, 2009, 6, 21-23.	19.0	166
85	Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3125-3130.	7.1	816
86	Midbody targeting of the ESCRT machinery by a noncanonical coiled coil in CEP55. FASEB Journal, 2009, 23, 864.1.	0.5	0
87	Structural basis for midbody targeting of spastin by the ESCRT-III protein CHMP1B. Nature Structural and Molecular Biology, 2008, 15, 1278-1286.	8.2	226
88	High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nature Methods, 2008, 5, 155-157.	19.0	1,104
89	Transport through the Golgi Apparatus by Rapid Partitioning within a Two-Phase Membrane System. Cell, 2008, 133, 1055-1067.	28.9	256
90	Fluorescent Proteins for Photoactivation Experiments. Methods in Cell Biology, 2008, 85, 45-61.	1.1	82

JENNIFER

#	Article	IF	CITATIONS
91	DEVELOPING PHOTOACTIVATED LOCALIZATION MICROSCOPY (PALM)., 2007, , .		3
92	Nucleocytoplasmic shuttling mediates the dynamic maintenance of nuclear Dorsal levels during <i>Drosophila</i> embryogenesis. Development (Cambridge), 2007, 134, 4233-4241.	2.5	79
93	Monitoring chaperone engagement of substrates in the endoplasmic reticulum of live cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6536-6541.	7.1	105
94	Imaging Intracellular Fluorescent Proteins at Nanometer Resolution. Science, 2006, 313, 1642-1645.	12.6	7,580
95	Online Article: Insights into COPI coat assembly and function in living cells. Trends in Cell Biology, 2006, 16, e1-e4.	7.9	42
96	Golgi Inheritance in Mammalian Cells Is Mediated through Endoplasmic Reticulum Export Activities. Molecular Biology of the Cell, 2006, 17, 990-1005.	2.1	108
97	The origin and maintenance of mammalian peroxisomes involves a de novo PEX16-dependent pathway from the ER. Journal of Cell Biology, 2006, 173, 521-532.	5.2	293
98	The secretory membrane system in the Drosophila syncytial blastoderm embryo exists as functionally compartmentalized units around individual nuclei. Journal of Cell Biology, 2006, 173, 219-230.	5.2	77
99	ArfGAP1 dynamics and its role in COPI coat assembly on Golgi membranes of living cells. Journal of Cell Biology, 2005, 168, 1053-1063.	5.2	88
100	Dynamics of GBF1, a Brefeldin A-Sensitive Arf1 Exchange Factor at the Golgi. Molecular Biology of the Cell, 2005, 16, 1213-1222.	2.1	225
101	Molecular basis for Golgi maintenance and biogenesis. Current Opinion in Cell Biology, 2004, 16, 364-372.	5.4	144
102	Dynamics of Secretory Membrane Trafficking. Annals of the New York Academy of Sciences, 2004, 1038, 115-124.	3.8	18
103	Measuring Protein Mobility by Photobleaching GFP Chimeras in Living Cells. Current Protocols in Cell Biology, 2003, 19, Unit 21.1.	2.3	103
104	Development and Use of Fluorescent Protein Markers in Living Cells. Science, 2003, 300, 87-91.	12.6	942
105	Photobleaching and photoactivation: following protein dynamics in living cells. Nature Cell Biology, 2003, Suppl, S7-14.	10.3	153
106	Dissection of COPI and Arf1 dynamics in vivo and role in Golgi membrane transport. Nature, 2002, 417, 187-193.	27.8	239
107	A Photoactivatable GFP for Selective Photolabeling of Proteins and Cells. Science, 2002, 297, 1873-1877.	12.6	1,518
108	Role of Grb2 in EGF-stimulated EGFR internalization. Journal of Cell Science, 2002, 115, 1791-1802.	2.0	120

JENNIFER

#	Article	IF	CITATIONS
109	The secretory membrane system studied in real-time. Histochemistry and Cell Biology, 2001, 116, 97-107.	1.7	21
110	Studying protein dynamics in living cells. Nature Reviews Molecular Cell Biology, 2001, 2, 444-456.	37.0	1,112
111	Nuclear pore complexes form immobile networks and have a very low turnover in live mammalian cells. Journal of Cell Biology, 2001, 154, 71-84.	5.2	364
112	Maintenance of Golgi structure and function depends on the integrity of ER export. Journal of Cell Biology, 2001, 155, 557-570.	5.2	398
113	Rapid Cycling of Lipid Raft Markers between the Cell Surface and Golgi Complex. Journal of Cell Biology, 2001, 153, 529-542.	5.2	496
114	Cell cycle maintenance and biogenesis of the Golgi complex. Histochemistry and Cell Biology, 2000, 114, 93-103.	1.7	47
115	Secretory Protein Trafficking and Organelle Dynamics in Living Cells. Annual Review of Cell and Developmental Biology, 2000, 16, 557-589.	9.4	449
116	Diffusion in Inhomogeneous Media: Theory and Simulations Applied to Whole Cell Photobleach Recovery. Biophysical Journal, 2000, 79, 1761-1770.	0.5	121
117	Dynamics and retention of misfolded proteins in native ER membranes. Nature Cell Biology, 2000, 2, 288-295.	10.3	251
118	A Bromodomain Protein, MCAP, Associates with Mitotic Chromosomes and Affects G2-to-M Transition. Molecular and Cellular Biology, 2000, 20, 6537-6549.	2.3	24
119	Secretory pathway kinetics and <i>in vivo</i> analysis of protein traffic from the Golgi complex to the cell surface. FASEB Journal, 1999, 13, S251-6.	0.5	34
120	Coated-pit dynamics. Nature, 1999, 398, 753-753.	27.8	1
121	Golgi Membranes Are Absorbed into and Reemerge from the ER during Mitosis. Cell, 1999, 99, 589-601.	28.9	315
122	Kinetic Analysis of Secretory Protein Traffic and Characterization of Golgi to Plasma Membrane Transport Intermediates in Living Cells. Journal of Cell Biology, 1998, 143, 1485-1503.	5.2	569
123	Transport Through the Secretory Pathway: Observations of Cargo and Peripheral Coat Proteins. Microscopy and Microanalysis, 1998, 4, 1026-1027.	0.4	0
124	Golgi Tubule Traffic and the Effects of Brefeldin A Visualized in Living Cells. Journal of Cell Biology, 1997, 139, 1137-1155.	5.2	461
125	Nuclear Membrane Dynamics and Reassembly in Living Cells: Targeting of an Inner Nuclear Membrane Protein in Interphase and Mitosis. Journal of Cell Biology, 1997, 138, 1193-1206.	5.2	738
126	ER-to-Golgi transport visualized in living cells. Nature, 1997, 389, 81-85.	27.8	1,053

#	Article	IF	CITATIONS
127	Brefeldin A's effects on endosomes, lysosomes, and the TGN suggest a general mechanism for regulating organelle structure and membrane traffic. Cell, 1991, 67, 601-616.	28.9	829
	A recycling nathway between the endonlasmic reticulum and the Golgi apparatus for retention of		

¹²⁸ A recycling pathway between the endoplasmic reticulum and the Golgi apparatus for retention of unassembled MHC class I molecules. Nature, 1991, 352, 441-444.

27.8 188