Adrian Peter Bird

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6510994/publications.pdf

Version: 2024-02-01

134 papers 45,958 citations

69 h-index 124 g-index

149 all docs 149 docs citations

149 times ranked 38698 citing authors

#	Article	IF	CITATIONS
1	DNA methylation patterns and epigenetic memory. Genes and Development, 2002, 16, 6-21.	5.9	5,932
2	Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nature Genetics, 2003, 33, 245-254.	21.4	5,434
3	Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature, 1998, 393, 386-389.	27.8	3,102
4	DNA methylation landscapes: provocative insights from epigenomics. Nature Reviews Genetics, 2008, 9, 465-476.	16.3	2,619
5	CpG islands and the regulation of transcription. Genes and Development, 2011, 25, 1010-1022.	5.9	2,555
6	Perceptions of epigenetics. Nature, 2007, 447, 396-398.	27.8	2,465
7	A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nature Genetics, 2001, 27, 322-326.	21.4	1,401
8	Purification, sequence, and cellular localization of a novel chromosomal protein that binds to Methylated DNA. Cell, 1992, 69, 905-914.	28.9	1,253
9	Identification and Characterization of a Family of Mammalian Methyl-CpG Binding Proteins. Molecular and Cellular Biology, 1998, 18, 6538-6547.	2.3	1,216
10	MeCP2 Is a Transcriptional Repressor with Abundant Binding Sites in Genomic Chromatin. Cell, 1997, 88, 471-481.	28.9	1,165
11	Reversal of Neurological Defects in a Mouse Model of Rett Syndrome. Science, 2007, 315, 1143-1147.	12.6	1,093
12	The essentials of DNA methylation. Cell, 1992, 70, 5-8.	28.9	972
13	MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nature Genetics, 1999, 23, 58-61.	21.4	783
14	DNA methylation inhibits transcription indirectly via a methyl-CpG binding protein. Cell, 1991, 64, 1123-1134.	28.9	708
15	High levels of De Novo methylation and altered chromatin structure at CpG islands in cell lines. Cell, 1990, 62, 503-514.	28.9	671
16	A fraction of the mouse genome that is derived from islands of nonmethylated, CpG-rich DNA. Cell, 1985, 40, 91-99.	28.9	661
17	Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic Acids Research, 2004, 32, 4100-4108.	14.5	660
18	CpG islands influence chromatin structure via the CpG-binding protein Cfp1. Nature, 2010, 464, 1082-1086.	27.8	577

#	Article	IF	CITATIONS
19	The thymine glycosylase MBD4 can bind to the product of deamination at methylated CpG sites. Nature, 1999, 401, 301-304.	27.8	576
20	Dissection of the methyl-CpG binding domain from the chromosomal protein MeCP2. Nucleic Acids Research, 1993, 21, 4886-4892.	14.5	561
21	A Novel CpG Island Set Identifies Tissue-Specific Methylation at Developmental Gene Loci. PLoS Biology, 2008, 6, e22.	5.6	533
22	Closely related proteins MBD2 and MBD3 play distinctive but interacting roles in mouse development. Genes and Development, 2001, 15, 710-723.	5.9	453
23	The p120 catenin partner Kaiso is a DNA methylation-dependent transcriptional repressor. Genes and Development, 2001, 15, 1613-1618.	5.9	431
24	The International Human Epigenome Consortium: A Blueprint for Scientific Collaboration and Discovery. Cell, 2016, 167, 1145-1149.	28.9	404
25	Histone deacetylases: silencers for hire. Trends in Biochemical Sciences, 2000, 25, 121-126.	7.5	400
26	The Role of MeCP2 in the Brain. Annual Review of Cell and Developmental Biology, 2011, 27, 631-652.	9.4	388
27	Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability. Nature, 2011, 470, 419-423.	27.8	323
28	BLUEPRINT to decode the epigenetic signature written in blood. Nature Biotechnology, 2012, 30, 224-226.	17.5	323
29	Rett syndrome mutations abolish the interaction of MeCP2 with the NCoR/SMRT co-repressor. Nature Neuroscience, 2013, 16, 898-902.	14.8	317
30	Enhanced CpG Mutability and Tumorigenesis in MBD4-Deficient Mice. Science, 2002, 297, 403-405.	12.6	294
31	Rett syndrome: a complex disorder with simple roots. Nature Reviews Genetics, 2015, 16, 261-275.	16.3	277
32	Cell type–specific DNA methylation at intragenic CpG islands in the immune system. Genome Research, 2011, 21, 1074-1086.	5 . 5	256
33	Cfp1 integrates both CpG content and gene activity for accurate H3K4me3 deposition in embryonic stem cells. Genes and Development, 2012, 26, 1714-1728.	5.9	253
34	Active Repression of Methylated Genes by the Chromosomal Protein MBD1. Molecular and Cellular Biology, 2000, 20, 1394-1406.	2.3	238
35	Interaction between chromatin proteins MECP2 and ATRX is disrupted by mutations that cause inherited mental retardation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2709-2714.	7.1	231
36	The methyl-CpG binding protein MeCP2 is essential for embryonic development in the mouse. Nature Genetics, 1996, 12, 205-208.	21.4	227

#	Article	IF	CITATIONS
37	A component of the transcriptional represser MeCP1 shares a motif with DNA methyltransferase and HRX proteins. Nature Genetics, 1997, 16, 256-259.	21.4	222
38	The major form of MeCP2 has a novel N-terminus generated by alternative splicing. Nucleic Acids Research, 2004, 32, 1818-1823.	14.5	217
39	CpG methylation is targeted to transcription units in an invertebrate genome. Genome Research, 2007, 17, 625-631.	5 . 5	217
40	CpG islands as genomic footprints of promoters that are associated with replication origins. Current Biology, 1999, 9, R661-R667.	3.9	206
41	Systemic Delivery of MeCP2 Rescues Behavioral and Cellular Deficits in Female Mouse Models of Rett Syndrome. Journal of Neuroscience, 2013, 33, 13612-13620.	3.6	194
42	Gene Expression Analysis Exposes Mitochondrial Abnormalities in a Mouse Model of Rett Syndrome. Molecular and Cellular Biology, 2006, 26, 5033-5042.	2.3	182
43	Deficiency of Mbd2 suppresses intestinal tumorigenesis. Nature Genetics, 2003, 34, 145-147.	21.4	181
44	Up-regulation of glucocorticoid-regulated genes in a mouse model of Rett syndrome. Human Molecular Genetics, 2005, 14, 2247-2256.	2.9	174
45	DNA methylation and chromatin structure. FEBS Letters, 1991, 285, 155-159.	2.8	167
46	Kaiso-Deficient Mice Show Resistance to Intestinal Cancer. Molecular and Cellular Biology, 2006, 26, 199-208.	2.3	146
47	Rett Syndrome: Crossing the Threshold to Clinical Translation. Trends in Neurosciences, 2016, 39, 100-113.	8.6	135
48	Nonmethylated Transposable Elements and Methylated Genes in a Chordate Genome. Science, 1999, 283, 1164-1167.	12.6	134
49	Fas-associated death domain protein interacts with methyl-CpG binding domain protein 4: A potential link between genome surveillance and apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5211-5216.	7.1	134
50	Morphological and functional reversal of phenotypes in a mouse model of Rett syndrome. Brain, 2012, 135, 2699-2710.	7.6	132
51	Absence of genome-wide changes in DNA methylation during development of the zebrafish. Nature Genetics, 1999, 23, 139-140.	21.4	130
52	Somatic frameshift mutations in the MBD4 gene of sporadic colon cancers with mismatch repair deficiency. Oncogene, 1999, 18, 8044-8047.	5.9	127
53	Vestiges of a DNA methylation system in Drosophila melanogaster?. Nature Genetics, 1999, 23, 389-390.	21.4	124
54	Radically truncated MeCP2 rescues Rett syndrome-like neurological defects. Nature, 2017, 550, 398-401.	27.8	121

#	Article	IF	CITATIONS
55	MeCP2 recognizes cytosine methylated tri-nucleotide and di-nucleotide sequences to tune transcription in the mammalian brain. PLoS Genetics, 2017, 13, e1006793.	3.5	117
56	The effect of interspecific oocytes on demethylation of sperm DNA. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7636-7640.	7.1	112
57	Loss of rDNA methylation accompanies the onset of ribosomal gene activity in early development of X. laevis. Cell, 1981, 26, 381-390.	28.9	111
58	A Temporal Threshold for Formaldehyde Crosslinking and Fixation. PLoS ONE, 2009, 4, e4636.	2.5	110
59	The Role of Epigenetic Mechanisms in the Regulation of Gene Expression in the Nervous System. Journal of Neuroscience, 2016, 36, 11427-11434.	3.6	109
60	Ribosomal RNA gene amplification by rolling circles. Journal of Molecular Biology, 1974, 87, 473-487.	4.2	106
61	Genomic structure and chromosomal mapping of the murine and human Mbd1, Mbd2, Mbd3, and Mbd4 genes. Mammalian Genome, 1999, 10, 906-912.	2.2	100
62	Synthetic CpG islands reveal DNA sequence determinants of chromatin structure. ELife, 2014, 3, e03397.	6.0	95
63	The Molecular Basis of MeCP2 Function in the Brain. Journal of Molecular Biology, 2020, 432, 1602-1623.	4.2	89
64	A dominant role for the methyl-CpG-binding protein Mbd2 in controlling Th2 induction by dendritic cells. Nature Communications, 2015, 6, 6920.	12.8	87
65	MBD4 deficiency reduces the apoptotic response to DNA-damaging agents in the murine small intestine. Oncogene, 2003, 22, 7130-7136.	5.9	85
66	Postnatal inactivation reveals enhanced requirement for MeCP2 at distinct age windows. Human Molecular Genetics, 2012, 21, 3806-3814.	2.9	84
67	Gene Silencing by Methylâ€CPGâ€Binding Proteins. Novartis Foundation Symposium, 1998, 214, 6-21.	1.1	84
68	Disease Modeling Using Embryonic Stem Cells: MeCP2 Regulates Nuclear Size and RNA Synthesis in Neurons. Stem Cells, 2012, 30, 2128-2139.	3.2	79
69	Transcriptional repression by methylation of CpG. Journal of Cell Science, 1992, 1992, 9-14.	2.0	78
70	The molecular basis of variable phenotypic severity among common missense mutations causing Rett syndrome. Human Molecular Genetics, 2016, 25, 558-570.	2.9	76
71	R-Loops Enhance Polycomb Repression at a Subset of Developmental Regulator Genes. Molecular Cell, 2019, 73, 930-945.e4.	9.7	75
72	Densely methylated sequences that are preferentially localized at telomere-proximal regions of human chromosomes. Gene, 1999, 240, 269-277.	2.2	72

#	Article	IF	CITATIONS
73	Genomic Approaches Reveal Unexpected Genetic Divergence Within Ciona intestinalis. Journal of Molecular Evolution, 2005, 61, 627-635.	1.8	72
74	MOLECULAR BIOLOGY: MeCP2 Repression Goes Nonglobal. Science, 2003, 302, 793-795.	12.6	66
75	An Alternative Promoter in the Mouse Major Histocompatibility Complex Class II I-A \hat{l}^2 Gene: Implications for the Origin of CpG Islands. Molecular and Cellular Biology, 1998, 18, 4433-4443.	2.3	65
76	Targeting of De Novo DNA Methylation Throughout the Oct-4 Gene Regulatory Region in Differentiating Embryonic Stem Cells. PLoS ONE, 2010, 5, e9937.	2.5	65
77	dSIR2 and dHDAC6: Two Novel, Inhibitor-Resistant Deacetylases in Drosophila melanogaster. Experimental Cell Research, 2001, 265, 90-103.	2.6	64
78	MeCP2 and other methylâ€epg binding proteins. Mental Retardation and Developmental Disabilities Research Reviews, 2002, 8, 87-93.	3.6	64
79	The methyl-CpG-binding protein MeCP2 and neurological disease. Biochemical Society Transactions, 2008, 36, 575-583.	3.4	63
80	DNAase I sensitivity and methylation of active versus inactive rRNA genes in Xenopus species hybrids. Cell, 1982, 29, 211-218.	28.9	60
81	Reversibility of functional deficits in experimental models of Rett syndrome. Biochemical Society Transactions, 2010, 38, 498-506.	3.4	59
82	Mbd2 Contributes to DNA Methylation-Directed Repression of the Xist Gene. Molecular and Cellular Biology, 2007, 27, 3750-3757.	2.3	57
83	Exclusive expression of MeCP2 in the nervous system distinguishes between brain and peripheral Rett syndrome-like phenotypes. Human Molecular Genetics, 2016, 25, ddw269.	2.9	57
84	DNA methylation reader MECP2: cell type- and differentiation stage-specific protein distribution. Epigenetics and Chromatin, 2014, 7, 17.	3.9	55
85	Transcription in oocytes of highly methylated rDNA from Xenopus laevis sperm. Nature, 1983, 306, 200-203.	27.8	54
86	Studies of DNA methylation in animals. Journal of Cell Science, 1995, 1995, 37-39.	2.0	50
87	The Dinucleotide CG as a Genomic Signalling Module. Journal of Molecular Biology, 2011, 409, 47-53.	4.2	48
88	Binding of Histone H1 to DNA Is Indifferent to Methylation at CpG Sequences. Journal of Biological Chemistry, 1995, 270, 26473-26481.	3.4	44
89	Non-methylated islands in fish genomes are GC-poor. Nucleic Acids Research, 1991, 19, 1469-1474.	14.5	43
90	Sequence Analysis of Transposable Elements in the Sea Squirt, Ciona intestinalis. Molecular Biology and Evolution, 2000, 17, 1685-1694.	8.9	41

#	Article	IF	Citations
91	Predicting the total number of human genes. Nature Genetics, 1994, 8, 114-114.	21.4	35
92	DNasel-hypersensitive sites at promoter-like sequences in the spacer of Xenopus laevisand Xenopus borealisribosomal DNA. Nucleic Acids Research, 1983, 11, 5361-5380.	14.5	33
93	MBD2-Mediated Transcriptional Repression of the <i>p14</i> ^{ARF} Tumor Suppressor Gene in Human Colon Cancer Cells. Pathobiology, 2008, 75, 281-287.	3.8	30
94	Do short, frequent DNA sequence motifs mould the epigenome?. Nature Reviews Molecular Cell Biology, 2016, 17, 257-262.	37.0	30
95	MBD2 Is Required for Correct Spatial Gene Expression in the Gut. Molecular and Cellular Biology, 2007, 27, 4049-4057.	2.3	29
96	SALL4 controls cell fate in response to DNA base composition. Molecular Cell, 2021, 81, 845-858.e8.	9.7	29
97	Il2 transcription unleashed by active DNA demethylation. Nature Immunology, 2003, 4, 208-209.	14.5	27
98	Putting the DNA back into DNA methylation. Nature Genetics, 2011, 43, 1050-1051.	21.4	27
99	Is Gene Amplification RNA-directed?. Nature: New Biology, 1973, 242, 226-230.	4.5	26
100	A unique <scp>DNA</scp> methylation signature defines a population of <scp>IFN</scp> â€Î³/ <scp>IL</scp> â€4 doubleâ€positive <scp>T</scp> cells during helminth infection. European Journal of Immunology, 2014, 44, 1835-1841.	2.9	26
101	Sequenceâ€specific <scp>DNA</scp> binding by <scp>AT</scp> â€hook motifs in Me <scp>CP</scp> 2. FEBS Letters, 2016, 590, 2927-2933.	2.8	26
102	Neuronal non-CG methylation is an essential target for MeCP2 function. Molecular Cell, 2021, 81, 1260-1275.e12.	9.7	24
103	Toxicity of overexpressed MeCP2 is independent of HDAC3 activity. Genes and Development, 2018, 32, 1514-1524.	5.9	23
104	Affinity for DNA Contributes to NLS Independent Nuclear Localization of MeCP2. Cell Reports, 2018, 24, 2213-2220.	6.4	23
105	A mutation-led search for novel functional domains in MeCP2. Human Molecular Genetics, 2018, 27, 2531-2545.	2.9	22
106	MBD2 deficiency does not accelerate p53 mediated lymphomagenesis. Oncogene, 2005, 24, 2430-2432.	5.9	18
107	MBD4 deficiency does not increase mutation or accelerate tumorigenesis in mice lacking MMR. Oncogene, 2004, 23, 5693-5696.	5.9	16
108	The origin of the rRNA precursor fromXenopus borealis, analysedin vivoandin vitro. Nucleic Acids Research, 1983, 11, 8167-8181.	14.5	15

#	Article	IF	CITATIONS
109	Genome Biology: Not Drowning but Waving. Cell, 2013, 154, 951-952.	28.9	12
110	The Selfishness of Law-Abiding Genes. Trends in Genetics, 2020, 36, 8-13.	6.7	11
111	Identification and characterization of a family of mammalian methyl CpG-binding proteins. Genetical Research, 1998, 72, 59-72.	0.9	10
112	Quantitative analysis questions the role of MeCP2 as a global regulator of alternative splicing. PLoS Genetics, 2020, 16, e1009087.	3.5	10
113	Absence of MeCP2 binding to non-methylated GT-rich sequences in vivo. Nucleic Acids Research, 2020, 48, 3542-3552.	14.5	10
114	CpG Islands: A Historical Perspective. Methods in Molecular Biology, 2018, 1766, 3-13.	0.9	9
115	Genetic determinants of the epigenome in development and cancer. Swiss Medical Weekly, 2017, 147, w14523.	1.6	8
116	Mutant weed breaks silence. Nature, 2000, 405, 137-138.	27.8	7
117	DNA Methylation: Mega-Year Inheritance with the Help of Darwin. Current Biology, 2020, 30, R319-R321.	3.9	4
118	CDKL5 deficiency disorder: a pathophysiology of neural maintenance. Journal of Clinical Investigation, 2021, 131, .	8.2	4
119	High-throughput sequencing SELEX for the determination of DNA-binding protein specificities inÂvitro. STAR Protocols, 2022, 3, 101490.	1.2	4
120	Max Birnstiel 1933–2014: Gene pioneer. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 302-303.	7.1	3
121	Themajor transitions in evolution. Trends in Ecology and Evolution, 1995, 10, 385.	8.7	2
122	An Orphan CpG Island Drives Expression of a let-7 miRNA Precursor with an Important Role in Mouse Development. Epigenomes, 2019, 3, 7.	1.8	2
123	Genetic therapies for neurological disorders. Human Genetics, 2022, 141, 1085-1091.	3.8	2
124	Comparative analysis of potential broad-spectrum neuronal Cre drivers. Wellcome Open Research, 0, 7, 185.	1.8	1
125	Human Genome Evolution. Edited by M. Jackson, T. Strachan and G. Dover. BIOS Scientific Publishers, 1996. 306 + x pages. Price £60.00 (\$120). ISBN 1 859960 95 2 Genetical Research, 1997, 69, 75-78.	0.9	0
126	God and Human Dignity. International Journal of Public Theology, 2009, 3, 503-504.	0.2	0

#	Article	IF	CITATIONS
127	Francesca Aran Murphy and Christopher Asprey, eds, Ecumenism Today: The Universal Church in the 21st Century (Aldershot: Ashgate Publishing House, 2008), pp. viii + 220, £50.00, ISBN 978-0-7546-5961-7 (hbk) International Journal of Public Theology, 2011, 5, 499.	0.2	0
128	Christianity as a World Religion. International Journal of Public Theology, 2011, 5, 260-261.	0.2	0
129	Epigenetics: Discovery. New Scientist, 2013, 217, ii-iii.	0.0	O
130	 Wichael Amaladoss. 2006. i> The Asian Jesus i>. New York: Orbis Books, pp. 180, Pb, Â \pm 11.99 Studies in World Christianity, 2008, 14, 182-182.	0.2	0
131	Quantitative analysis questions the role of MeCP2 as a global regulator of alternative splicing. , 2020, 16, e1009087.		O
132	Quantitative analysis questions the role of MeCP2 as a global regulator of alternative splicing. , 2020, 16, e1009087.		0
133	Quantitative analysis questions the role of MeCP2 as a global regulator of alternative splicing. , 2020, 16, e1009087.		0
134	Quantitative analysis questions the role of MeCP2 as a global regulator of alternative splicing. , 2020, 16, e1009087.		0