
Antonia Infantes Molina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/651081/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CO2 hydrogenation to lower olefins on a high surface area K-promoted bulk Fe-catalyst. Applied Catalysis B: Environmental, 2017, 200, 530-542.	20.2	229
2	A novel method for preparing an active nickel phosphide catalyst for HDS of dibenzothiophene. Journal of Catalysis, 2009, 263, 4-15.	6.2	214
3	Studies of the synthesis of transition metal phosphides and their activity in the hydrodeoxygenation of a biofuel model compound. Journal of Catalysis, 2012, 294, 184-198.	6.2	214
4	Oxygen-removal of dibenzofuran as a model compound in biomass derived bio-oil on nickel phosphide catalysts: Role of phosphorus. Applied Catalysis B: Environmental, 2013, 136-137, 140-149.	20.2	185
5	Characterization and evaluation of rice husk ash and wood ash in sustainable clay matrix bricks. Ceramics International, 2017, 43, 463-475.	4.8	135
6	Dibenzothiophene hydrodesulfurization over cobalt phosphide catalysts prepared through a new synthetic approach: Effect of the support. Applied Catalysis B: Environmental, 2009, 92, 100-113.	20.2	97
7	Ni2P and CoP catalysts prepared from phosphite-type precursors for HDS–HDN competitive reactions. Applied Catalysis A: General, 2010, 390, 253-263.	4.3	90
8	Nickel and cobalt phosphides as effective catalysts for oxygen removal of dibenzofuran: role of contact time, hydrogen pressure and hydrogen/feed molar ratio. Catalysis Science and Technology, 2015, 5, 3403-3415.	4.1	79
9	Photodegradation of methylene blue and methyl orange with CuO supported on ZnO photocatalysts: The effect of copper loading and reaction temperature. Materials Science in Semiconductor Processing, 2020, 119, 105257.	4.0	76
10	Hydrogenolysis of anisole over mesoporous sulfided CoMoW/SBA-15(16) catalysts. Catalysis Today, 2011, 172, 103-110.	4.4	73
11	The Influence of the Support on the Formation of Ni ₂ P Based Catalysts by a New Synthetic Approach. Study of the Catalytic Activity in the Hydrodesulfurization of Dibenzothiophene. Journal of Physical Chemistry C, 2009, 113, 17032-17044.	3.1	72
12	Conversion of glycerol into lactic acid using Pd or Pt supported on carbon as catalyst. Catalysis Today, 2017, 279, 317-326.	4.4	69
13	Influence of the silica support on the activity of Ni and Ni2P based catalysts in the hydrodechlorination of chlorobenzene. Study of factors governing catalyst deactivation. Journal of Molecular Catalysis A, 2013, 368-369, 78-87.	4.8	65
14	Bimetallic Mo-Co/ZSM-5 and Mo-Ni/ZSM-5 catalysts for methane dehydroaromatization: A study of the effect of pretreatment and metal loadings on the catalytic behavior. Applied Catalysis A: General, 2020, 589, 117247.	4.3	61
15	Inhibition of CoMo/HMS catalyst deactivation in the HDS of 4,6-DMDBT by support modification with phosphate. Fuel, 2011, 90, 2726-2737.	6.4	55
16	3-D flower like Ce–Zr–Cu mixed oxide systems in the CO preferential oxidation (CO-PROX): Effect of catalyst composition. Applied Catalysis B: Environmental, 2015, 168-169, 385-395.	20.2	55
17	A new low-cost synthetic route to obtain zirconium containing mesoporous silica. Microporous and Mesoporous Materials, 2004, 75, 23-32.	4.4	53
18	Effect of the treatment with H3PO4 on the catalytic activity of Nb2O5 supported on Zr-doped mesoporous silica catalyst. Case study: Glycerol dehydration. Applied Catalysis B: Environmental, 2018, 221, 158-168.	20.2	52

ANTONIA INFANTES MOLINA

#	Article	IF	CITATIONS
19	Nickel supported on porous silica as catalysts for the gas-phase hydrogenation of acetonitrile. Journal of Catalysis, 2004, 225, 479-488.	6.2	49
20	Bimetallic Ru/Ni supported catalysts for the gas phase hydrogenation of acetonitrile. Applied Catalysis A: General, 2010, 381, 132-144.	4.3	49
21	HDS and HDN on SBA-supported RuS2 catalysts promoted by Pt and Ir. Journal of Catalysis, 2013, 305, 101-117.	6.2	47
22	Simultaneous hydrodesulfurization and hydrodenitrogenation on MoP/SiO2 catalysts: Effect of catalyst preparation method. Applied Catalysis B: Environmental, 2012, 113-114, 87-99.	20.2	43
23	"Breathing―in Adsorbateâ€Responsive Metal Tetraphosphonate Hybrid Materials. Chemistry - A European Journal, 2009, 15, 6612-6618.	3.3	40
24	Effect of Si/Al ratio of ZSM-5 support on structure and activity of Mo species in methane dehydroaromatization. Fuel, 2020, 278, 118290.	6.4	40
25	In vitro degradability and bioactivity of oxidized bacterial cellulose-hydroxyapatite composites. Carbohydrate Polymers, 2020, 237, 116174.	10.2	39
26	Effect of the Al/clay ratio on the thiabendazol removal by aluminum pillared clays. Applied Clay Science, 2014, 87, 245-253.	5.2	36
27	On the detectability limits of nickel species on NiO/γ-Al 2 O 3 catalytic materials. Applied Catalysis A: General, 2016, 525, 180-189.	4.3	35
28	Effect of Preparation Conditions on the Polymorphism and Transport Properties of La _{6–<i>x</i>} MoO _{12â^Î} (0 ≤i>x ≤0.8). Chemistry of Materials, 2017, 29, 6966-6975.	6.7	35
29	Thiophene Adsorption on Microporous Activated Carbons Impregnated with PdCl ₂ . Energy & amp; Fuels, 2010, 24, 3436-3442.	5.1	34
30	Hydrodesulfurization enhancement of heavy and light S-hydrocarbons on NiMo/HMS catalysts modified with Al and P. Applied Catalysis A: General, 2014, 484, 108-121.	4.3	34
31	Low-temperature carbon monoxide oxidation over zirconia-supported CuO–CeO2 catalysts: Effect of zirconia support properties. Applied Surface Science, 2017, 403, 612-622.	6.1	34
32	Designing supported ZnNi catalysts for the removal of oxygen from bio-liquids and aromatics from diesel. Green Chemistry, 2012, 14, 2759.	9.0	33
33	Ni and Fe mixed phosphides catalysts for O-removal of a bio-oil model molecule from lignocellulosic biomass. Molecular Catalysis, 2017, 437, 130-139.	2.0	33
34	Gas phase catalytic hydrodechlorination of chlorobenzene over cobalt phosphide catalysts with different P contents. Journal of Hazardous Materials, 2013, 260, 167-175.	12.4	32
35	Catalysts based on Co/zirconium doped mesoporous silica MSU for the hydrogenation and hydrogenolysis/hydrocracking of tetralin. Applied Catalysis A: General, 2005, 286, 239-248.	4.3	31
36	Effect of molybdenum and tungsten on Co/MSU as hydrogenation catalysts. Journal of Catalysis, 2006, 240, 258-267.	6.2	31

#	Article	IF	CITATIONS
37	Investigation of using bottom or fly pine-olive pruning ash to produce environmental friendly ceramic materials. Applied Clay Science, 2017, 135, 333-346.	5.2	31
38	Pt, Ir and Pd promoted Co/MSU catalysts for hydrotreating of tetralin: A thiotolerance study. Applied Catalysis B: Environmental, 2007, 73, 180-192.	20.2	30
39	Enhanced HDO activity of Ni2P promoted with noble metals. Catalysis Science and Technology, 2016, 6, 7323-7333.	4.1	30
40	Nanostructured Co3O4 electrocatalyst for OER: The role of organic polyelectrolytes as soft templates. Electrochimica Acta, 2021, 398, 139338.	5.2	30
41	Increasing the catalytic stability by optimizing the formation of zeolite-supported Mo carbide species ex situ for methane dehydroaromatization. Journal of Catalysis, 2019, 375, 314-328.	6.2	29
42	Incorporation of molybdenum into Pd and Pt catalysts supported on commercial silica for hydrodeoxygenation reaction of dibenzofuran. Applied Catalysis A: General, 2017, 547, 86-95.	4.3	27
43	Au and AuCu Nanoparticles Supported on SBA-15 Ordered Mesoporous Titania-Silica as Catalysts for Methylene Blue Photodegradation. Materials, 2018, 11, 890.	2.9	25
44	SBA-15 type materials as support of catalysts based on ruthenium sulfide for sulfur removal. Applied Catalysis B: Environmental, 2010, 97, 257-268.	20.2	24
45	Al-pillared montmorillonite as a support for catalysts based on ruthenium sulfide in HDS reactions. Catalysis Today, 2012, 187, 88-96.	4.4	24
46	Synthesis and characterization of Ga-modified Ti-HMS oxide materials with varying Ga content. Journal of Molecular Catalysis A, 2015, 397, 26-35.	4.8	24
47	Study of bifunctionality of Pt/SBA-15 catalysts for HDO of Dibenzofuran reaction: Addition of Mo or use of an acidic support. Applied Catalysis A: General, 2019, 580, 93-101.	4.3	23
48	Evaluation of technological properties of fired clay bricks containing pyrrhotite ash. Construction and Building Materials, 2021, 269, 121312.	7.2	23
49	Residue-based activated carbon from passion fruit seed as support to H3PW12O40 for the esterification of oleic acid. Journal of Cleaner Production, 2021, 282, 124477.	9.3	23
50	Ceria doping boosts methylene blue photodegradation in titania nanostructures. Materials Chemistry Frontiers, 2021, 5, 4138-4152.	5.9	23
51	Synthesis, characterization and catalytic activity of ruthenium-doped cobalt catalysts. Applied Catalysis A: General, 2008, 341, 35-42.	4.3	22
52	Characterization and reactivity of Ce-promoted PtBa lean NOx trap catalysts. Catalysis Today, 2012, 197, 178-189.	4.4	22
53	Hydrogen from steam reforming of ethanol over cobalt nanoparticles: Effect of boron impurities. Applied Catalysis A: General, 2016, 518, 67-77.	4.3	21
54	Strontium delivery systems based on bacterial cellulose and hydroxyapatite for guided bone regeneration. Cellulose, 2018, 25, 6661-6679.	4.9	19

#	Article	IF	CITATIONS
55	Role of Cs on Hydrodesulfurization Activity of RuS ₂ Catalysts Supported on a Mesoporous SBA-15 Type Material. ACS Catalysis, 2011, 1, 175-186.	11.2	18
56	2D Corrugated Magnesium Carboxyphosphonate Materials: Topotactic Transformations and Interlayer "Decoration―with Ammonia. Inorganic Chemistry, 2012, 51, 7889-7896.	4.0	18
57	Pd-Nb binfunctional catalysts supported on silica and zirconium phosphate heterostructures for O-removal of dibenzofurane. Catalysis Today, 2016, 277, 143-151.	4.4	18
58	A novel heterogeneous photo-Fenton Fe/Al2O3 catalyst for dye degradation. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 421, 113529.	3.9	18
59	CoxPy Catalysts in HDO of Phenol and Dibenzofuran: Effect of P content. Topics in Catalysis, 2017, 60, 1094-1107.	2.8	17
60	Au nanoparticles supported on nanorod-like TiO2 as catalysts in the CO-PROX reaction under dark and light irradiation: Effect of acidic and alkaline synthesis conditions. International Journal of Hydrogen Energy, 2019, 44, 923-936.	7.1	17
61	Heterogeneous acid catalysts prepared by immobilization of H3PW12O40 on silica through impregnation and inclusion, applied to the synthesis of 3H-1,5-benzodiazepines. Molecular Catalysis, 2020, 485, 110842.	2.0	17
62	Al-SBA-15 as a support of catalysts based on chromium sulfide for sulfur removal. Catalysis Today, 2009, 143, 137-144.	4.4	16
63	Chromium Species as Captors of Sulfur Molecules on Nickel-Based Hydrotreating Catalysts. Energy & Fuels, 2009, 23, 101-110.	5.1	16
64	Hydrodechlorination of polychlorinated molecules using transition metal phosphide catalysts. Journal of Hazardous Materials, 2015, 296, 112-119.	12.4	16
65	Sustainable photo-assisted CO oxidation in H 2 -rich stream by simulated solar light response of Au nanoparticles supported on TiO 2. Catalysis Today, 2018, 304, 135-142.	4.4	16
66	Ortho-xylene hydroisomerization under pressure on HMS-Ti mesoporous silica decorated with Ga2O3 nanoparticles. Fuel, 2015, 158, 405-415.	6.4	14
67	From light to heavy alkali metal tetraphosphonates (M = Li, Na, K, Rb, Cs): cation size-induced structural diversity and water-facilitated proton conductivity. CrystEngComm, 2018, 20, 7648-7658.	2.6	13
68	Au-Decorated Ce–Ti Mixed Oxides for Efficient CO Preferential Photooxidation. ACS Applied Materials & Interfaces, 2020, 12, 38019-38030.	8.0	12
69	Improving noble metal catalytic activity in the dry reforming of methane by adding niobium. Fuel, 2022, 308, 121996.	6.4	12
70	Active ruthenium phosphide as selective sulfur removal catalyst of gasoline model compounds. Fuel Processing Technology, 2020, 208, 106507.	7.2	11
71	Effect of Ir and Pt Addition on the HDO Performance of RuS2/SBA-15 Sulfide Catalysts. Topics in Catalysis, 2015, 58, 247-257.	2.8	10
72	Hydrodesulfurization activity of Ni-containing unsupported Ga(x)WS2 catalysts. Catalysis Communications, 2019, 130, 105760.	3.3	10

#	Article	IF	CITATIONS
73	Aluminum doped mesoporous silica SBA-15 for glycerol dehydration to value-added chemicals. Journal of Sol-Gel Science and Technology, 2017, 83, 342-354.	2.4	9
74	CO Preferential Photo-Oxidation in Excess of Hydrogen in Dark and Simulated Solar Light Irradiation over AuCu-Based Catalysts on SBA-15 Mesoporous Silica-Titania. Materials, 2018, 11, 1203.	2.9	8
75	Recent advances in photo-assisted preferential CO oxidation in H2-rich stream. Current Opinion in Green and Sustainable Chemistry, 2020, 21, 9-15.	5.9	8
76	Synthesis and Characterization of Metal-Supported Mesoporous Silicas Applied to the Adsorption of Benzothiophene. Adsorption Science and Technology, 2011, 29, 691-704.	3.2	7
77	Zirconium Phosphate Heterostructures as Catalyst Support in Hydrodeoxygenation Reactions. Catalysts, 2017, 7, 176.	3.5	7
78	Silica–Calcareous Non Fired Bricks Made of Biomass Ash and Dust Filter from Gases Purification. Waste and Biomass Valorization, 2019, 10, 417-431.	3.4	7
79	NiAlCe mixed oxides obtained from layered double hydroxides applied to anisole hydrodeoxygenation. Catalysis Today, 2022, 394-396, 282-294.	4.4	7
80	Bimetallic Niobium-Based Catalysts Supported on SBA-15 for Hydrodeoxygenation of Anisole. Industrial & Engineering Chemistry Research, 2021, 60, 18831-18840.	3.7	7
81	Separation of Light Liquid Paraffin C5–C9 with Cuban Volcanic Glass Previously Used in Copper Elimination from Water Solutions. Applied Sciences (Switzerland), 2018, 8, 295.	2.5	6
82	Silica-Related Catalysts for CO2 Transformation into Methanol and Dimethyl Ether. Catalysts, 2020, 10, 1282.	3.5	5
83	Adsorption and separation of propane and propylene by Cuban natural volcanic glass. Materials Chemistry and Physics, 2015, 168, 132-137.	4.0	4
84	Separation of N–C5H12–C9H20 Paraffins Using Boehmite by Inverse Gas Chromatography. Applied Sciences (Switzerland), 2019, 9, 1810.	2.5	4
85	Photocatalyzed preferential oxidation of CO under simulated sunlight using Au–transition metal oxide–sepiolite catalysts. Dalton Transactions, 2020, 49, 3946-3955.	3.3	4
86	Advantages of the Incorporation of Luffa-Based Activated Carbon to Titania for Improving the Removal of Methylene Blue from Aqueous Solution. Applied Sciences (Switzerland), 2021, 11, 7607.	2.5	4
87	Hydrothermal synthesis of bulk Ni impregnated WO3 2D layered structures as catalysts for the desulfurization of 3-methyl thiophene. Chemical Engineering Journal Advances, 2022, 11, 100312.	5.2	4
88	Pd/Pt on Ti-containing Mixed Oxides as Dearomatization Catalysts: Physico-chemical Characterization and Activity. Catalysis Letters, 2005, 104, 29-37.	2.6	3
89	LIGHT N-PARAFFINS SEPARATION BY INVERSE GAS CHROMATOGRAPHY WITH CUBAN VOLCANIC GLASS. Brazilian Journal of Chemical Engineering, 2019, 36, 531-539.	1.3	3
90	Iron phosphides presenting different stoichiometry as nanocatalysts in the HDO of phenol. Catalysis Today, 2020, 349, 117-127.	4.4	2

#	Article	IF	CITATIONS
91	6. Advances in the application of transition metal phosphide catalysts for hydrodeoxygenation reactions of bio-oil from biomass pyrolysis. , 2020, , 145-166.		2
92	The Effect of Thermal Treatment under Different Atmospheric Conditions on the Catalytic Performance of Nickel Supported on Porous Silica in the Gas-Phase Hydrogenation of Acetonitrile. Adsorption Science and Technology, 2007, 25, 185-198.	3.2	1
93	Mesoporous Phosphate Heterostructures: Synthesis and Application on Adsorption and Catalysis. , 2010, , 423-446.		о