
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6510396/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Inherited microdeletions in the Angelman and Prader–Willi syndromes define an imprinting centre on<br>human chromosome 15. Nature Genetics, 1995, 9, 395-400.                                                                | 21.4 | 589       |
| 2  | Epigenetic changes may contribute to the formation and spontaneous regression of retinoblastoma.<br>Human Genetics, 1989, 83, 155-158.                                                                                       | 3.8  | 488       |
| 3  | Cloning defined regions of the human genome by microdissection of banded chromosomes and enzymatic amplification. Nature, 1989, 338, 348-350.                                                                                | 27.8 | 351       |
| 4  | Epimutations in Prader-Willi and Angelman Syndromes: A Molecular Study of 136 Patients with an<br>Imprinting Defect. American Journal of Human Genetics, 2003, 72, 571-577.                                                  | 6.2  | 280       |
| 5  | Angelman syndrome — insights into a rare neurogenetic disorder. Nature Reviews Neurology, 2016, 12,<br>584-593.                                                                                                              | 10.1 | 256       |
| 6  | Imprint switching on human chromosome 15 may involve alternative transcripts of the SNRPN gene.<br>Nature Genetics, 1996, 14, 163-170.                                                                                       | 21.4 | 250       |
| 7  | Mechanisms of imprinting of the Prader–Willi/Angelman region. American Journal of Medical<br>Genetics, Part A, 2008, 146A, 2041-2052.                                                                                        | 1.2  | 246       |
| 8  | Assisted reproduction: the epigenetic perspective. Human Reproduction Update, 2005, 11, 473-482.                                                                                                                             | 10.8 | 207       |
| 9  | A critical view on transgenerational epigenetic inheritance in humans. Nature Communications, 2018, 9, 2973.                                                                                                                 | 12.8 | 203       |
| 10 | Molecular diagnosis of the Prader-Willi and Angelman syndromes by detection of parent-of-origin specific DNA methylation in 15q11-13. Human Genetics, 1992, 90, 313-5.                                                       | 3.8  | 195       |
| 11 | Maternal methylation imprints on human chromosome 15 are established during or after fertilization.<br>Nature Genetics, 2001, 27, 341-344.                                                                                   | 21.4 | 193       |
| 12 | Modification of 15q11 — q13 DNA methylation imprints in unique Angelman and Prader — Willi patients.<br>Human Molecular Genetics, 1993, 2, 1377-1382.                                                                        | 2.9  | 144       |
| 13 | Sporadic Imprinting Defects in Prader-Willi Syndrome and Angelman Syndrome: Implications for<br>Imprint-Switch Models, Genetic Counseling, and Prenatal Diagnosis. American Journal of Human<br>Genetics, 1998, 63, 170-180. | 6.2  | 142       |
| 14 | De novo deletions of SNRPN exon 1 in early human and mouse embryos result in a paternal to maternal imprint switch. Nature Genetics, 2000, 25, 74-78.                                                                        | 21.4 | 142       |
| 15 | A Single-Tube PCR Test for the Diagnosis of Angelman and Prader-Willi Syndrome Based on Allelic<br>Methylation Differences at the SNRPN Locus. European Journal of Human Genetics, 1997, 5, 94-98.                           | 2.8  | 139       |
| 16 | N6-Adenosine Methylation in MiRNAs. PLoS ONE, 2015, 10, e0118438.                                                                                                                                                            | 2.5  | 115       |
| 17 | A paternal deletion of MKRN3, MACEL2 and NDN does not result in Prader–Willi syndrome. European<br>Journal of Human Genetics, 2009, 17, 582-590.                                                                             | 2.8  | 112       |
| 18 | Unstable TTTTA/TTTCA expansions in MARCH6 are associated with Familial Adult Myoclonic Epilepsy type<br>3. Nature Communications, 2019, 10, 4919.                                                                            | 12.8 | 111       |

| #  | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | The Human Retinoblastoma Gene Is Imprinted. PLoS Genetics, 2009, 5, e1000790.                                                                                                                                                         | 3.5  | 110       |
| 20 | A previously unrecognised phenotype characterised by obesity, muscular hypotonia, and ability to<br>speak in patients with Angelman syndrome caused by an imprinting defect. European Journal of Human<br>Genetics, 1999, 7, 638-644. | 2.8  | 88        |
| 21 | Mechanisms of imprint dysregulation. American Journal of Medical Genetics, Part C: Seminars in<br>Medical Genetics, 2010, 154C, 321-328.                                                                                              | 1.6  | 82        |
| 22 | The molecular function and clinical phenotype of partial deletions of the IGF2/H19 imprinting control region depends on the spatial arrangement of the remaining CTCF-binding sites. Human Molecular Genetics, 2013, 22, 544-557.     | 2.9  | 78        |
| 23 | Somatic mosaicism in patients with Angelman syndrome and an imprinting defect. Human Molecular<br>Genetics, 2004, 13, 2547-2555.                                                                                                      | 2.9  | 74        |
| 24 | Epigenetic dynamics of monocyte-to-macrophage differentiation. Epigenetics and Chromatin, 2016, 9, 33.                                                                                                                                | 3.9  | 73        |
| 25 | Microdissection of the Prader-Willi syndrome chromosome region and identification of potential gene sequences. Genomics, 1990, 6, 521-527.                                                                                            | 2.9  | 72        |
| 26 | Clinical features of maternal uniparental disomy 14 in patients with an epimutation and a deletion of the imprinted <i>DLK1/GTL2</i> gene cluster. Human Mutation, 2008, 29, 1141-1146.                                               | 2.5  | 68        |
| 27 | Disruption of the Bipartite Imprinting Center in a Family with Angelman Syndrome. American Journal of Human Genetics, 2001, 68, 1290-1294.                                                                                            | 6.2  | 62        |
| 28 | Epigenetic germline mosaicism in infertile men. Human Molecular Genetics, 2015, 24, 1295-1304.                                                                                                                                        | 2.9  | 58        |
| 29 | C15orf2 and a novel noncoding transcript from the Prader–Willi/Angelman syndrome region show<br>monoallelic expression in fetal brain. Genomics, 2007, 89, 588-595.                                                                   | 2.9  | 52        |
| 30 | FTO levels affect RNA modification and the transcriptome. European Journal of Human Genetics, 2013, 21, 317-323.                                                                                                                      | 2.8  | 52        |
| 31 | In Brief: Genomic imprinting and imprinting diseases. Journal of Pathology, 2014, 232, 485-487.                                                                                                                                       | 4.5  | 44        |
| 32 | ldentification of a Testis-Specific Gene (C15orf2) in the Prader–Willi Syndrome Region on Chromosome<br>15. Genomics, 2000, 65, 174-183.                                                                                              | 2.9  | 42        |
| 33 | Heritable germline epimutations in humans. Nature Genetics, 2007, 39, 573-574.                                                                                                                                                        | 21.4 | 41        |
| 34 | Identification of cis- and trans-acting factors possibly modifying the risk of epimutations on chromosome 15. European Journal of Human Genetics, 2006, 14, 752-758.                                                                  | 2.8  | 37        |
| 35 | New insights into the imprinted MEC8-DMR in 14q32 and clinical and molecular description of novel patients with Temple syndrome. European Journal of Human Genetics, 2017, 25, 935-945.                                               | 2.8  | 35        |
| 36 | Expression of SNURF–SNRPN upstream transcripts and epigenetic regulatory genes during human spermatogenesis. European Journal of Human Genetics, 2009, 17, 1463-1470.                                                                 | 2.8  | 33        |

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Clinical utility gene card for: Angelman Syndrome. European Journal of Human Genetics, 2015, 23, 3-3.                                                                                                   | 2.8 | 32        |
| 38 | Pre- and Postovulatory Aging of Murine Oocytes Affect the Transcript Level and Poly(A) Tail Length of<br>Maternal Effect Genes. PLoS ONE, 2014, 9, e108907.                                             | 2.5 | 30        |
| 39 | Clinical phenotypes of MAGEL2 mutations and deletions. Orphanet Journal of Rare Diseases, 2014, 9, 40.                                                                                                  | 2.7 | 28        |
| 40 | Locus-Specific DNA Methylation Analysis by Targeted Deep Bisulfite Sequencing. Methods in Molecular<br>Biology, 2018, 1767, 351-366.                                                                    | 0.9 | 28        |
| 41 | Novel microdeletions on chromosome 14q32.2 suggest a potential role for non-coding RNAs in<br>Kagami-Ogata syndrome. European Journal of Human Genetics, 2016, 24, 1724-1729.                           | 2.8 | 27        |
| 42 | A germ cellâ€specific ageing pattern in otherwise healthy men. Aging Cell, 2020, 19, e13242.                                                                                                            | 6.7 | 27        |
| 43 | Deep Bisulfite Sequencing of Aberrantly Methylated Loci in a Patient with Multiple Methylation<br>Defects. PLoS ONE, 2013, 8, e76953.                                                                   | 2.5 | 26        |
| 44 | wg-blimp: an end-to-end analysis pipeline for whole genome bisulfite sequencing data. BMC<br>Bioinformatics, 2020, 21, 169.                                                                             | 2.6 | 26        |
| 45 | The imprinted NPAP1/C15orf2 gene in the Prader–Willi syndrome region encodes a nuclear pore complex associated protein. Human Molecular Genetics, 2012, 21, 4038-4048.                                  | 2.9 | 25        |
| 46 | Preovulatory Aging In Vivo and In Vitro Affects Maturation Rates, Abundance of Selected Proteins,<br>Histone Methylation Pattern and Spindle Integrity in Murine Oocytes. PLoS ONE, 2016, 11, e0162722. | 2.5 | 23        |
| 47 | The sperm epigenome does not display recurrent epimutations in patients with severely impaired spermatogenesis. Clinical Epigenetics, 2020, 12, 61.                                                     | 4.1 | 23        |
| 48 | The C15orf2 gene in the Prader–Willi syndrome region is subject to genomic imprinting and positive selection. Neurogenetics, 2010, 11, 153-161.                                                         | 1.4 | 22        |
| 49 | The Origin of the RB1 Imprint. PLoS ONE, 2013, 8, e81502.                                                                                                                                               | 2.5 | 21        |
| 50 | A maternal deletion upstream of the imprint control region 2 in 11p15 causes loss of methylation and<br>familial Beckwith–Wiedemann syndrome. European Journal of Human Genetics, 2016, 24, 1280-1286.  | 2.8 | 20        |
| 51 | Regions of common inter-individual DNA methylation differences in human monocytes: genetic basis and potential function. Epigenetics and Chromatin, 2017, 10, 37.                                       | 3.9 | 20        |
| 52 | Clinical utility gene card for: Prader-Willi Syndrome. European Journal of Human Genetics, 2014, 22,<br>1153-1153.                                                                                      | 2.8 | 18        |
| 53 | Altering TET dioxygenase levels within physiological range affects DNA methylation dynamics of HEK293 cells. Epigenetics, 2015, 10, 819-833.                                                            | 2.7 | 18        |
| 54 | Hormone-induced delayed ovulation affects early embryonic development. Fertility and Sterility, 2011, 95, 2390-2394.                                                                                    | 1.0 | 17        |

| #  | Article                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Evolutionary Origin and Methylation Status of Human Intronic CpG Islands that Are Not Present in<br>Mouse. Genome Biology and Evolution, 2014, 6, 1579-1588.                                     | 2.5  | 16        |
| 56 | Lasp1 regulates adherens junction dynamics and fibroblast transformation in destructive arthritis.<br>Nature Communications, 2021, 12, 3624.                                                     | 12.8 | 16        |
| 57 | The adult phenotype of Schaaf-Yang syndrome. Orphanet Journal of Rare Diseases, 2020, 15, 294.                                                                                                   | 2.7  | 14        |
| 58 | Whole-genome methylation analysis of testicular germ cells from cryptozoospermic men points to recurrent and functionally relevant DNA methylation changes. Clinical Epigenetics, 2021, 13, 160. | 4.1  | 12        |
| 59 | The Imprinted NPAP1 Gene in the Prader–Willi Syndrome Region Belongs to a POM121-Related Family of Retrogenes. Genome Biology and Evolution, 2014, 6, 344-351.                                   | 2.5  | 11        |
| 60 | Common genetic variation in the Angelman syndrome imprinting centre affects the imprinting of chromosome 15. European Journal of Human Genetics, 2020, 28, 835-839.                              | 2.8  | 10        |
| 61 | Methylation analysis of SST and SSTR4 promoters in the neocortex of Alzheimer's disease patients.<br>Neuroscience Letters, 2014, 566, 241-246.                                                   | 2.1  | 9         |
| 62 | Parental origin and functional relevance of a de novo UBE3A variant. European Journal of Medical<br>Genetics, 2011, 54, 19-24.                                                                   | 1.3  | 8         |
| 63 | Waddington's epigenetic landscape and post-Darwinian biology. BioEssays, 2012, 34, 711-712.                                                                                                      | 2.5  | 7         |
| 64 | Genome-wide methylation analysis of retrocopy-associated CpG islands and their genomic environment. Epigenetics, 2016, 11, 216-226.                                                              | 2.7  | 7         |
| 65 | In vitro postovulatory oocyte aging affects H3K9 trimethylation in two-cell embryos after IVF. Annals of Anatomy, 2020, 227, 151424.                                                             | 1.9  | 7         |
| 66 | Genome-Wide Analysis of the Nucleosome Landscape in Individuals with Coffin-Siris Syndrome.<br>Cytogenetic and Genome Research, 2019, 159, 1-11.                                                 | 1.1  | 5         |
| 67 | The Diagnostic Journey of a Patient with Prader–Willi-Like Syndrome and a Unique Homozygous<br>SNURF-SNRPN Variant; Bio-Molecular Analysis and Review of the Literature. Genes, 2021, 12, 875.   | 2.4  | 4         |
| 68 | Human PPP1R26P1 Functions as cis-Repressive Element in Mouse Rb1. PLoS ONE, 2013, 8, e74159.                                                                                                     | 2.5  | 4         |
| 69 | Rhythm is not enough. Nature Genetics, 2007, 39, 1190-1191.                                                                                                                                      | 21.4 | 3         |
| 70 | GC-rich repeat expansions: associated disorders and mechanisms. Medizinische Genetik, 2022, 33, 325-335.                                                                                         | 0.2  | 2         |
| 71 | Next-Generation-Sequencing in der Epigenetik. Medizinische Genetik, 2019, 31, 205-211.                                                                                                           | 0.2  | 1         |
| 72 | A human somatic cell culture system for modelling gene silencing by transcriptional interference.<br>Heliyon, 2020, 6, e03261.                                                                   | 3.2  | 1         |

| #  | Article                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Novel strategies to cure imprinting disorders. Medizinische Genetik, 2020, 32, 335-340.                                                              | 0.2 | 1         |
| 74 | Of wolves and men: the role of paternal child care in the evolution of genomic imprinting. European<br>Journal of Human Genetics, 2009, 17, 273-274. | 2.8 | 0         |