Brian R Silliman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/651020/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metaâ€analysis of salt marsh vegetation impacts and recovery: a synthesis following the <i>Deepwater Horizon</i> oil spill. Ecological Applications, 2022, 32, e02489.	1.8	18
2	Heterogeneity within and among co-occurring foundation species increases biodiversity. Nature Communications, 2022, 13, 581.	5.8	21
3	The role of predators in coral disease dynamics. Coral Reefs, 2022, 41, 405-422.	0.9	13
4	Invertebrate Grazing on Live Turtlegrass (Thalassia testudinum): A Common Interaction That May Facilitate Fungal Growth. Frontiers in Marine Science, 2022, 8, .	1.2	0
5	Recovering wetland biogeomorphic feedbacks to restore the world's biotic carbon hotspots. Science, 2022, 376, eabn1479.	6.0	93
6	Ecology and the science of small-scale fisheries: A synthetic review of research effort for the Anthropocene. Biological Conservation, 2021, 254, 108895.	1.9	18
7	Inclusion of Intra- and Interspecific Facilitation Expands the Theoretical Framework for Seagrass Restoration. Frontiers in Marine Science, 2021, 8, .	1.2	10
8	Top-down control of foundation species recovery during coastal wetland restoration. Science of the Total Environment, 2021, 769, 144854.	3.9	11
9	Floodâ€stimulated herbivory drives range retraction of a plant ecosystem. Journal of Ecology, 2021, 109, 3541-3554.	1.9	4
10	Longâ€ŧerm study reveals topâ€down effect of crabs on a California salt marsh. Ecosphere, 2021, 12, e03703.	1.0	12
11	A survey of benthic invertebrate communities in native and non-native seagrass beds in St. John, USVI. Aquatic Botany, 2021, 175, 103448.	0.8	2
12	Optimal Planting Distance in a Simple Model of Habitat Restoration With an Allee Effect. Frontiers in Marine Science, 2021, 7, .	1.2	2
13	An invasive species erodes the performance of coastal wetland protected areas. Science Advances, 2021, 7, eabi8943.	4.7	45
14	A large invasive consumer reduces coastal ecosystem resilience by disabling positive species interactions. Nature Communications, 2021, 12, 6290.	5.8	14
15	Parasites enhance resistance to drought in a coastal ecosystem. Ecology, 2020, 101, e02897.	1.5	14
16	Relationships between a common Caribbean corallivorous snail and protected area status, coral cover, and predator abundance. Scientific Reports, 2020, 10, 16463.	1.6	5
17	Playing to the Positives: Using Synergies to Enhance Kelp Forest Restoration. Frontiers in Marine Science, 2020, 7, .	1.2	38
18	Challenges for Restoration of Coastal Marine Ecosystems in the Anthropocene. Frontiers in Marine Science, 2020, 7, .	1.2	60

#	Article	IF	CITATIONS
19	Artificial habitats host elevated densities of large reef-associated predators. PLoS ONE, 2020, 15, e0237374.	1.1	19
20	Facilitating Better Outcomes: How Positive Species Interactions Can Improve Oyster Reef Restoration. Frontiers in Marine Science, 2020, 7, .	1.2	27
21	Mimicry of emergent traits amplifies coastal restoration success. Nature Communications, 2020, 11, 3668.	5.8	67
22	Consumer regulation of the carbon cycle in coastal wetland ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190451.	1.8	9
23	Short-term changes in reef fish community metrics correlate with variability in large shark occurrence. Food Webs, 2020, 24, e00147.	0.5	3
24	Coming to Terms With Living Shorelines: A Scoping Review of Novel Restoration Strategies for Shoreline Protection. Frontiers in Marine Science, 2020, 7, .	1.2	49
25	Social and ecological outcomes of conservation interventions in tropical coastal marine ecosystems: a systematic map protocol. Environmental Evidence, 2020, 9, .	1.1	15
26	Positive Ecological Interactions and the Success of Seagrass Restoration. Frontiers in Marine Science, 2020, 7, .	1.2	77
27	Positive Interactions in the Coral Macro and Microbiome. Trends in Microbiology, 2020, 28, 602-604.	3.5	14
28	Bright Spots in Coastal Marine Ecosystem Restoration. Current Biology, 2020, 30, R1500-R1510.	1.8	90
29	Megafauna in Salt Marshes. Frontiers in Marine Science, 2020, 7, .	1.2	7
30	Phylogenetic, genomic, and biogeographic characterization of a novel and ubiquitous marine invertebrate-associated Rickettsiales parasite, <i>Candidatus</i> Aquarickettsia rohweri, gen. nov., sp. nov. ISME Journal, 2019, 13, 2938-2953.	4.4	82
31	Supporting <i>Spartina</i> : Interdisciplinary perspective shows <i>Spartina</i> as a distinct solid genus. Ecology, 2019, 100, e02863.	1.5	39
32	Climate Change, Human Impacts, and Coastal Ecosystems in the Anthropocene. Current Biology, 2019, 29, R1021-R1035.	1.8	323
33	The future of Blue Carbon science. Nature Communications, 2019, 10, 3998.	5.8	406
34	A Facilitation Cascade Enhances Local Biodiversity in Seagrass Beds. Diversity, 2019, 11, 30.	0.7	18
35	Field Experiments and Meta-analysis Reveal Wetland Vegetation as a Crucial Element in the Coastal Protection Paradigm. Current Biology, 2019, 29, 1800-1806.e3.	1.8	50
36	Harnessing Positive Species Interactions to Enhance Coastal Wetland Restoration. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	77

#	Article	IF	CITATIONS
37	Citizen science reveals female sand tiger sharks (<i>Carcharias taurus</i>) exhibit signs of site fidelity on shipwrecks. Ecology, 2019, 100, e02687.	1.5	14
38	A seaweed increases ecosystem multifunctionality when invading bare mudflats. Biological Invasions, 2019, 21, 27-36.	1.2	8
39	Weather fluctuations affect the impact of consumers on vegetation recovery following a catastrophic dieâ€off. Ecology, 2019, 100, e02559.	1.5	8
40	Species recovery and recolonization of past habitats: lessons for science and conservation from sea otters in estuaries. PeerJ, 2019, 7, e8100.	0.9	16
41	Secondary foundation species enhance biodiversity. Nature Ecology and Evolution, 2018, 2, 634-639.	3.4	85
42	Nitrogen enrichment suppresses other environmental drivers and homogenizes salt marsh leaf microbiome. Ecology, 2018, 99, 1411-1418.	1.5	13
43	The importance of an underestimated grazer under climate change: how crab density, consumer competition, and physical stress affect salt marsh resilience. Oecologia, 2018, 187, 205-217.	0.9	30
44	Mutualistic interactions amplify saltmarsh restoration success. Journal of Applied Ecology, 2018, 55, 405-414.	1.9	66
45	Biogeography of salt marsh plant zonation on the Pacific coast of South America. Journal of Biogeography, 2018, 45, 238-247.	1.4	22
46	Predator sizeâ€structure and species identity determine cascading effects in a coastal ecosystem. Ecology and Evolution, 2018, 8, 12435-12442.	0.8	3
47	Physical Stress, Consumer Control, and New Theory in Ecology. Trends in Ecology and Evolution, 2018, 33, 492-503.	4.2	42
48	A Global Synthesis Reveals Gaps in Coastal Habitat Restoration Research. Sustainability, 2018, 10, 1040.	1.6	50
49	Are the ghosts of nature's past haunting ecology today?. Current Biology, 2018, 28, R532-R537.	1.8	43
50	Local management actions can increase coral resilience to thermally-induced bleaching. Nature Ecology and Evolution, 2018, 2, 1075-1079.	3.4	51
51	Natural enemies govern ecosystem resilience in the face of extreme droughts. Ecology Letters, 2017, 20, 194-201.	3.0	68
52	The effects of elevated temperature and dissolved Ï <scp>CO</scp> ₂ on a marine foundation species. Ecology and Evolution, 2017, 7, 3808-3814.	0.8	14
53	Abiotic factors influence the dynamics of marine habitat use byÂa highly mobile "freshwater―top predator. Hydrobiologia, 2017, 802, 155-174.	1.0	16
54	Effects of predation and nutrient enrichment on the success and microbiome of a foundational coral. Ecology, 2017, 98, 830-839.	1.5	68

#	Article	IF	CITATIONS
55	Natural History and Environmental Patterns in the El Yali Coastal Wetland, Central Chile. , 2017, , 169-193.		0
56	An invasive foundation species enhances multifunctionality in a coastal ecosystem. Proceedings of the United States of America, 2017, 114, 8580-8585.	3.3	99
57	Incorporating thresholds into understanding salinity tolerance: A study using saltâ€ŧolerant plants in salt marshes. Ecology and Evolution, 2017, 7, 6326-6333.	0.8	31
58	Behavioral self-organization underlies the resilience of a coastal ecosystem. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8035-8040.	3.3	55
59	Five years of Deepwater Horizon oil spill effects on marsh periwinkles Littoraria irrorata. Marine Ecology - Progress Series, 2017, 576, 135-144.	0.9	20
60	Time to cash in on positive interactions for coral restoration. PeerJ, 2017, 5, e3499.	0.9	55
61	Conservation bias: What have we learned?. , 2017, , .		0
62	Business as usual leads to underperformance in coastal restoration. , 2017, , .		0
63	Consumer control as a common driver of coastal vegetation worldwide. Ecological Monographs, 2016, 86, 278-294.	2.4	75
64	A keystone mutualism underpins resilience of a coastal ecosystem to drought. Nature Communications, 2016, 7, 12473.	5.8	98
65	Facilitation and the niche: implications for coexistence, range shifts and ecosystem functioning. Functional Ecology, 2016, 30, 70-78.	1.7	179
66	Deepwater Horizon Oil Spill Impacts on Salt Marsh Fiddler Crabs (Uca spp.). Estuaries and Coasts, 2016, 39, 1154-1163.	1.0	44
67	Thresholds in marsh resilience to the Deepwater Horizon oil spill. Scientific Reports, 2016, 6, 32520.	1.6	19
68	Bottomâ€up and topâ€down human impacts interact to affect a protected coastal Chilean marsh. Ecology, 2016, 97, 640-648.	1.5	16
69	Geographical distribution patterns of <i>Carcharocles megalodon</i> over time reveal clues about extinction mechanisms. Journal of Biogeography, 2016, 43, 1645-1655.	1.4	63
70	How habitat-modifying organisms structure the food web of two coastal ecosystems. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152326.	1.2	58
71	Consumer control of the establishment of marsh foundation plants in intertidal mudflats. Marine Ecology - Progress Series, 2016, 547, 79-89.	0.9	14

Bottom-up and top-down interactions in coastal interface systems. , 2015, , 157-200.

8

#	Article	IF	CITATIONS
73	Habitat use patterns of the invasive red lionfish <i><scp>P</scp>terois volitans</i> : a comparison between mangrove and reef systems in <scp>S</scp> an <scp>S</scp> alvador, <scp>B</scp> ahamas. Marine Ecology, 2015, 36, 28-37.	0.4	22
74	Facilitation shifts paradigms and can amplify coastal restoration efforts. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14295-14300.	3.3	191
75	Long-Distance Interactions Regulate the Structure and Resilience of Coastal Ecosystems. Annual Review of Marine Science, 2015, 7, 139-158.	5.1	74
76	Consumer–plant interaction strength: importance of body size, density and metabolic biomass. Oikos, 2015, 124, 1274-1281.	1.2	30
77	Physical stress modifies topâ€down and bottomâ€up forcing on plant growth and reproduction in a coastal ecosystem. Ecology, 2015, 96, 2147-2156.	1.5	21
78	Wide-ranging phylogeographic structure of invasive red lionfish in the Western Atlantic and Greater Caribbean. Marine Biology, 2015, 162, 773-781.	0.7	22
79	Foundation species' overlap enhances biodiversity and multifunctionality from the patch to landscape scale in southeastern United States salt marshes. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150421.	1.2	102
80	Factors affecting individual foraging specialization and temporal diet stability across the range of a large "generalist―apex predator. Oecologia, 2015, 178, 5-16.	0.9	64
81	Does relative abundance modify multiple predator effects?. Basic and Applied Ecology, 2015, 16, 641-651.	1.2	13
82	Biogeographic consequences of nutrient enrichment for plant–herbivore interactions in coastal wetlands. Ecology Letters, 2015, 18, 462-471.	3.0	47
83	Densityâ€dependent effects on initial growth of a branching coral under restoration. Restoration Ecology, 2015, 23, 197-200.	1.4	15
84	Size, sex and individualâ€level behaviour drive intrapopulation variation in crossâ€ecosystem foraging of a topâ€predator. Journal of Animal Ecology, 2015, 84, 35-48.	1.3	44
85	Non-consumptive predator effects intensify grazer–plant interactions by driving vertical habitat shifts. Marine Ecology - Progress Series, 2015, 537, 49-58.	0.9	11
86	Habitat collapse due to overgrazing threatens turtle conservation in marine protected areas. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132890.	1.2	123
87	Secondary foundation species as drivers of trophic and functional diversity: evidence from a tree–epiphyte system. Ecology, 2014, 95, 185-196.	1.5	77
88	Independent and combined effects of multiple predators across ontogeny of a dominant grazer. Oikos, 2014, 123, 1081-1090.	1.2	10
89	Salt marshes. Current Biology, 2014, 24, R348-R350.	1.8	24
90	Animal-Borne Imaging Reveals Novel Insights into the Foraging Behaviors and Diel Activity of a Large-Bodied Apex Predator, the American Alligator (Alligator mississippiensis). PLoS ONE, 2014, 9, e83953.	1.1	27

#	Article	IF	CITATIONS
91	Impacts of marine invaders on biodiversity depend on trophic position and functional similarity. Marine Ecology - Progress Series, 2014, 495, 39-47.	0.9	117
92	Livestock as a potential biological control agent for an invasive wetland plant. PeerJ, 2014, 2, e567.	0.9	20
93	Coastal adaptation with ecological engineering. Nature Climate Change, 2013, 3, 787-791.	8.1	215
94	Consumer Fronts, Global Change, and Runaway Collapse in Ecosystems. Annual Review of Ecology, Evolution, and Systematics, 2013, 44, 503-538.	3.8	97
95	Impacts of a large-bodied, apex predator (Alligator mississippiensis Daudin 1801) on salt marsh food webs. Journal of Experimental Marine Biology and Ecology, 2013, 440, 185-191.	0.7	39
96	Rapid Degradation of <i>Deepwater Horizon</i> Spilled Oil by Indigenous Microbial Communities in Louisiana Saltmarsh Sediments. Environmental Science & Technology, 2013, 47, 13303-13312.	4.6	108
97	Nature-Based Coastal Defenses: Can Biodiversity Help?. , 2013, , 451-458.		9
98	Consumer diversity across kingdoms supports multiple functions in a coastal ecosystem. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20621-20626.	3.3	50
99	Non-Linear Interactions between Consumers and Flow Determine the Probability of Plant Community Dominance on Maine Rocky Shores. PLoS ONE, 2013, 8, e67625.	1.1	5
100	The Roles of Large Top Predators in Coastal Ecosystems: New Insights from Long Term Ecological Research. Oceanography, 2013, 26, 156-167.	0.5	48
101	Degradation and resilience in Louisiana salt marshes after the BP– <i>Deepwater Horizon</i> oil spill. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11234-11239.	3.3	282
102	American Alligator Digestion Rate of Blue Crabs and Its Implications for Stomach Contents Analysis. Copeia, 2012, 2012, 419-423.	1.4	20
103	Patch sizeâ€dependent community recovery after massive disturbance. Ecology, 2012, 93, 101-110.	1.5	66
104	Genetic structure and connectivity patterns of two Caribbean rocky-intertidal gastropods. Journal of Molluscan Studies, 2012, 78, 112-118.	0.4	16
105	A Meta-Analysis of Seaweed Impacts on Seagrasses: Generalities and Knowledge Gaps. PLoS ONE, 2012, 7, e28595.	1.1	93
106	A Three-Stage Symbiosis Forms the Foundation of Seagrass Ecosystems. Science, 2012, 336, 1432-1434.	6.0	204
107	New metrics for managing and sustaining the ocean's bounty. Marine Policy, 2012, 36, 303-306.	1.5	67
108	The value of estuarine and coastal ecosystem services. Ecological Monographs, 2011, 81, 169-193.	2.4	3,639

#	Article	IF	CITATIONS
109	Top predators suppress rather than facilitate plants in a trait-mediated tri-trophic cascade. Biology Letters, 2011, 7, 710-713.	1.0	32
110	A broad framework to organize and compare ecological invasion impacts. Environmental Research, 2011, 111, 899-908.	3.7	74
111	A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO ₂ . Frontiers in Ecology and the Environment, 2011, 9, 552-560.	1.9	2,354
112	Whole-Community Facilitation Regulates Biodiversity on Patagonian Rocky Shores. PLoS ONE, 2011, 6, e24502.	1.1	100
113	A framework to study the context-dependent impacts of marine invasions. Journal of Experimental Marine Biology and Ecology, 2011, 400, 322-327.	0.7	79
114	The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm. Climatic Change, 2011, 106, 7-29.	1.7	740
115	Crab regulation of cross-ecosystem resource transfer by marine foraging fire ants. Oecologia, 2011, 166, 1111-1119.	0.9	17
116	Predator diversity stabilizes and strengthens trophic control of a keystone grazer. Biology Letters, 2011, 7, 79-82.	1.0	27
117	Interactions among Foundation Species and Their Consequences for Community Organization, Biodiversity, and Conservation. BioScience, 2011, 61, 782-789.	2.2	219
118	Abiotic stress mediates top-down and bottom-up control in a Southwestern Atlantic salt marsh. Oecologia, 2010, 163, 181-191.	0.9	62
119	Comparative Phylogeography of North American Atlantic Salt Marsh Communities. Estuaries and Coasts, 2010, 33, 828-839.	1.0	31
120	Ecological performance and possible origin of a ubiquitous but under-studied gastropod. Estuarine, Coastal and Shelf Science, 2010, 87, 501-509.	0.9	21
121	Effects of selection and mutation on mitochondrial variation and inferences of historical population expansion in a Caribbean reef fish. Molecular Phylogenetics and Evolution, 2010, 57, 821-828.	1.2	14
122	Ecosystem Services as a Common Language for Coastal Ecosystemâ€Based Management. Conservation Biology, 2010, 24, 207-216.	2.4	246
123	Nutrient enrichment enhances hidden differences in phenotype to drive a cryptic plant invasion. Oikos, 2010, 119, 1776-1784.	1.2	66
124	Population Genetics of a Trochid Gastropod Broadens Picture of Caribbean Sea Connectivity. PLoS ONE, 2010, 5, e12675.	1.1	32
125	Mangrove use by the invasive lionfish Pterois volitans. Marine Ecology - Progress Series, 2010, 401, 291-294.	0.9	107
126	Habitat Cascades: The Conceptual Context and Global Relevance of Facilitation Cascades via Habitat Formation and Modification. Integrative and Comparative Biology, 2010, 50, 158-175.	0.9	216

#	Article	IF	CITATIONS
127	Facilitation cascade drives positive relationship between native biodiversity and invasion success. Ecology, 2010, 91, 1269-1275.	1.5	123
128	Broad-scale patterns of abundance of non-indigenous soft-bottom invertebrates in Denmark. Helgoland Marine Research, 2009, 63, 159-167.	1.3	17
129	Distribution and ecological role of the non-native macroalga Gracilaria vermiculophylla in Virginia salt marshes. Biological Invasions, 2009, 11, 2303-2316.	1.2	52
130	Grazer facilitation of fungal infection and the control of plant growth in southâ€western Atlantic salt marshes. Journal of Ecology, 2009, 97, 781-787.	1.9	49
131	EVIDENCE FOR IMPACTS OF NONINDIGENOUS MACROALGAE: A METAâ€ANALYSIS OF EXPERIMENTAL FIELD STUDIES < sup > 1 < / sup > . Journal of Phycology, 2009, 45, 812-819.	1.0	100
132	Using Facilitation Theory to Enhance Mangrove Restoration. Ambio, 2009, 38, 109-109.	2.8	36
133	Can conservation biologists rely on established community structure rules to manage novel systems? $\hat{a} \in \$ Not in salt marshes. , 2009, 19, 413-422.		34
134	Nonâ€linearity in ecosystem services: temporal and spatial variability in coastal protection. Frontiers in Ecology and the Environment, 2009, 7, 29-37.	1.9	622
135	Why do we fly? Ecologists' sins of emission. Frontiers in Ecology and the Environment, 2009, 7, 294-296.	1.9	74
136	The dynamics of bottom–up and top–down control in a New England salt marsh. Oikos, 2008, 117, 1050-1056.	1.2	38
137	Consumer Control of Salt Marshes Driven by Human Disturbance. Conservation Biology, 2008, 22, 618-623.	2.4	53
138	Mycorrhizal fungi determine saltâ€marsh plant zonation depending on nutrient supply. Journal of Ecology, 2008, 96, 431-437.	1.9	63
139	CRAB HERBIVORY REGULATES PLANT FACILITATIVE AND COMPETITIVE PROCESSES IN ARGENTINEAN MARSHES. Ecology, 2008, 89, 155-164.	1.5	79
140	Coastal Ecosystem-Based Management with Nonlinear Ecological Functions and Values. Science, 2008, 319, 321-323.	6.0	834
141	Annual changes in abundance of non-indigenous marine benthos on a very large spatial scale. Aquatic Invasions, 2008, 3, 133-140.	0.6	6
142	Incorporating positive interactions in aquatic restoration and conservation. Frontiers in Ecology and the Environment, 2007, 5, 153-160.	1.9	199
143	Hierarchical Organization via a Facilitation Cascade in Intertidal Cordgrass Bed Communities. American Naturalist, 2007, 169, 195-206.	1.0	168
144	Alien macroalgae in Denmark – a broad-scale national perspective. Marine Biology Research, 2007, 3, 61-72.	0.3	25

#	Article	IF	CITATIONS
145	The Pleistocene history of the sheepshead minnow (Cyprinodon variegatus): Non-equilibrium evolutionary dynamics within a diversifying species complex. Molecular Phylogenetics and Evolution, 2007, 43, 743-754.	1.2	20
146	A multi-locus assessment of connectivity and historical demography in the bluehead wrasse (Thalassoma bifasciatum). Heredity, 2007, 98, 294-302.	1.2	22
147	Ecosystem engineers activate mycorrhizal mutualism in salt marshes. Ecology Letters, 2007, 10, 902-908.	3.0	84
148	Academic Institutions in the United States and Canada Ranked According to Research Productivity in the Field of Conservation Biology. Conservation Biology, 2007, 21, 1139-1144.	2.4	20
149	Spatial variation in recruitment of native and invasive sessile species onto oyster reefs in a temperate soft-bottom lagoon. Estuarine, Coastal and Shelf Science, 2007, 72, 89-101.	0.9	20
150	Limpet grazing on a physically stressful Patagonian rocky shore. Journal of Experimental Marine Biology and Ecology, 2007, 353, 22-34.	0.7	31
151	Predation on the rocky shores of Patagonia, Argentina. Estuaries and Coasts, 2007, 30, 886-894.	1.0	43
152	Local and geographic variation in grazing intensity by herbivorous crabs in SW Atlantic salt marshes. Marine Ecology - Progress Series, 2007, 349, 235-243.	0.9	68
153	Gracilaria vermiculophylla (Ohmi) Papenfuss, 1967 (Rhodophyta, Gracilariaceae) in northern Europe, with emphasis on Danish conditions, and what to expect in the future. Aquatic Invasions, 2007, 2, 83-94.	0.6	57
154	Conservation science: a 20-year report card. Frontiers in Ecology and the Environment, 2006, 4, 473-480.	1.9	169
155	THE COMMUNITY STRUCTURE OF WESTERN ATLANTIC PATAGONIAN ROCKY SHORES. Ecological Monographs, 2006, 76, 439-460.	2.4	139
156	Relative effects ofLittoraria irrorata andProkelisia marginata onSpartina alterniflora. Estuaries and Coasts, 2006, 29, 639-644.	1.0	16
157	Competitive displacement of a detritivorous salt marsh snail. Journal of Experimental Marine Biology and Ecology, 2006, 339, 75-85.	0.7	35
158	Scale-dependent interactions and community structure on cobble beaches. Ecology Letters, 2005, 9, 051109031307001.	3.0	51
159	Drought, Snails, and Large-Scale Die-Off of Southern U.S. Salt Marshes. Science, 2005, 310, 1803-1806.	6.0	352
160	LINKING BIOGEOGRAPHY AND COMMUNITY ECOLOGY: LATITUDINAL VARIATION IN PLANT–HERBIVORE INTERACTION STRENGTH. Ecology, 2005, 86, 2310-2319.	1.5	215
161	Shoreline Development Drives Invasion of Phragmites australis and the Loss of Plant Diversity on New England Salt Marshes. Conservation Biology, 2004, 18, 1424-1434.	2.4	299
162	Trophic cascades in rocky shore tide pools: distinguishing lethal and nonlethal effects. Oecologia, 2004, 139, 427-432.	0.9	88

#	Article	IF	CITATIONS
163	CONSUMER-CONTROLLED COMMUNITY STATES ON GULF OF MAINE ROCKY SHORES. Ecology, 2004, 85, 1321-1331.	1.5	58
164	PHYSICAL AND BIOTIC DRIVERS OF PLANT DISTRIBUTION ACROSS ESTUARINE SALINITY GRADIENTS. Ecology, 2004, 85, 2539-2549.	1.5	304
165	DO ALTERNATE STABLE COMMUNITY STATES EXIST IN THE GULF OF MAINE ROCKY INTERTIDAL ZONE? REPLY. Ecology, 2004, 85, 1165-1167.	1.5	16
166	Salt Marshes Under Siege. American Scientist, 2004, 92, 54.	0.1	35
167	Underestimation of Spartina productivity in western Atlantic marshes: marsh invertebrates eat more than just detritus. Oikos, 2003, 101, 549-554.	1.2	59
168	Fungal farming in a snail. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15643-15648.	3.3	185
169	Symbiosis between an Alpheid Shrimp and a Xanthoid Crab in Salt Marshes of Mid-Atlantic States, U.S.A Journal of Crustacean Biology, 2003, 23, 876-879.	0.3	22
170	A trophic cascade regulates salt marsh primary production. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10500-10505.	3.3	423
171	Anthropogenic modification of New England salt marsh landscapes. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1395-1398.	3.3	318
172	DO ALTERNATE STABLE COMMUNITY STATES EXIST IN THE GULF OF MAINE ROCKY INTERTIDAL ZONE?. Ecology, 2002, 83, 3434-3448.	1.5	127
173	TOP-DOWN CONTROL OFSPARTINA ALTERNIFLORAPRODUCTION BY PERIWINKLE GRAZING IN A VIRGINIA SALT MARSH. Ecology, 2001, 82, 2830-2845.	1.5	197
174	Top-Down Control of Spartina alterniflora Production by Periwinkle Grazing in a Virginia Salt Marsh. Ecology, 2001, 82, 2830.	1.5	97
175	THE COMMUNITY STRUCTURE OF WESTERN ATLANTIC PATAGONIAN ROCKY SHORES. , 0, .		2
176	Forty years of experiments on aquatic invasive species: are study biases limiting our understanding of impacts?. NeoBiota, 0, 22, 1-22.	1.0	37