
Bernardo B N Strassburg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6510151/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Conservation needs to integrate knowledge across scales. Nature Ecology and Evolution, 2022, 6, 118-119.	3.4	40
2	How do we best synergize climate mitigation actions to coâ€benefit biodiversity?. Global Change Biology, 2022, 28, 2555-2577.	4.2	28
3	The role of different governance regimes in reducing native vegetation conversion and promoting regrowth in the Brazilian Amazon. Biological Conservation, 2022, 267, 109473.	1.9	11
4	Quantifying and categorising national extinction-risk footprints. Scientific Reports, 2022, 12, 5861.	1.6	9
5	Achieving global biodiversity goals by 2050 requires urgent and integrated actions. One Earth, 2022, 5, 597-603.	3.6	57
6	Reply to: Restoration prioritization must be informed by marginalized people. Nature, 2022, 607, E7-E9.	13.7	5
7	Associations between socioâ€environmental factors and landscapeâ€scale biodiversity recovery in naturally regenerating tropical and subtropical forests. Conservation Letters, 2021, 14, e12768.	2.8	18
8	A metric for spatially explicit contributions to science-based species targets. Nature Ecology and Evolution, 2021, 5, 836-844.	3.4	61
9	Opportunities and challenges of other effective area-based conservation measures (OECMs) for biodiversity conservation. Perspectives in Ecology and Conservation, 2021, 19, 115-120.	1.0	33
10	Setting robust biodiversity goals. Conservation Letters, 2021, 14, e12816.	2.8	23
11	Early Response of Soil Properties under Different Restoration Strategies in Tropical Hotspot. Land, 2021, 10, 768.	1.2	4
12	Areas of global importance for conserving terrestrial biodiversity, carbon and water. Nature Ecology and Evolution, 2021, 5, 1499-1509.	3.4	147
13	A Decade for restoring Earth. Science, 2021, 374, 125-125.	6.0	6
14	Predicting landscapeâ€scale biodiversity recovery by natural tropical forest regrowth. Conservation Biology, 2021, , .	2.4	4
15	Set ambitious goals for biodiversity and sustainability. Science, 2020, 370, 411-413.	6.0	225
16	Global priority areas for ecosystem restoration. Nature, 2020, 586, 724-729.	13.7	489
17	Area-based conservation in the twenty-first century. Nature, 2020, 586, 217-227.	13.7	438
18	Levers and leverage points for pathways to sustainability. People and Nature, 2020, 2, 693-717.	1.7	141

BERNARDO B N STRASSBURG

#	Article	IF	CITATIONS
19	Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature, 2020, 585, 551-556.	13.7	413
20	Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nature Communications, 2020, 11, 5978.	5.8	188
21	Characterising the spatial distribution of opportunities and constraints for land sparing in Brazil. Scientific Reports, 2020, 10, 1946.	1.6	8
22	Biochars Originating from Different Biomass and Pyrolysis Process Reveal to Have Different Microbial Characterization: Implications for Practice. Sustainability, 2020, 12, 1526.	1.6	3
23	Set a global target for ecosystems. Nature, 2020, 578, 360-362.	13.7	51
24	Achieving costâ€effective landscapeâ€scale forest restoration through targeted natural regeneration. Conservation Letters, 2020, 13, e12709.	2.8	120
25	Ecosystem services or nature's contributions? Reasons behind different interpretations in Latin America. Ecosystem Services, 2020, 42, 101070.	2.3	19
26	The importance of Legal Reserves for protecting the Pantanal biome and preventing agricultural losses. Journal of Environmental Management, 2020, 260, 110128.	3.8	20
27	Mapping co-benefits for carbon storage and biodiversity to inform conservation policy and action. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190128.	1.8	107
28	Survey-Based Qualitative Analysis of Young Generation Perception of Sustainable Development in Poland. Agricultural Engineering, 2020, 24, 75-86.	0.2	0
29	Transparency and sustainability in global commodity supply chains. World Development, 2019, 121, 163-177.	2.6	236
30	Look down—there is a gap—the need to include soil data in Atlantic Forest restoration. Restoration Ecology, 2019, 27, 361-370.	1.4	45
31	Global restoration opportunities in tropical rainforest landscapes. Science Advances, 2019, 5, eaav3223.	4.7	286
32	Soy expansion in Brazil's Cerrado. Conservation Letters, 2019, 12, e12671.	2.8	72
33	Three global conditions for biodiversity conservation and sustainable use: an implementation framework. National Science Review, 2019, 6, 1080-1082.	4.6	89
34	A new approach to map landscape variation in forest restoration success in tropical and temperate forest biomes. Journal of Applied Ecology, 2019, 56, 2675-2686.	1.9	24
35	Biochar amendment improves degraded pasturelands in Brazil: environmental and cost-benefit analysis. Scientific Reports, 2019, 9, 11993.	1.6	25
36	Conservation provides multiple wins for Brazil. Nature Ecology and Evolution, 2019, 3, 508-509.	3.4	6

#	Article	IF	CITATIONS
37	Strategic approaches to restoring ecosystems can triple conservation gains and halve costs. Nature Ecology and Evolution, 2019, 3, 62-70.	3.4	199
38	Searching for solutions to the conflict over Europe's oldest forest. Conservation Biology, 2019, 33, 476-479.	2.4	9
39	Limiting the high impacts of Amazon forest dieback with no-regrets science and policy action. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11671-11679.	3.3	38
40	The Effects of Gliricidia-Derived Biochar on Sequential Maize and Bean Farming. Sustainability, 2018, 10, 578.	1.6	14
41	Results from On-The-Ground Efforts to Promote Sustainable Cattle Ranching in the Brazilian Amazon. Sustainability, 2018, 10, 1301.	1.6	52
42	Moment of truth for the Cerrado hotspot. Nature Ecology and Evolution, 2017, 1, 99.	3.4	535
43	Using markets to leverage investment in forest and landscape restoration in the tropics. Forest Policy and Economics, 2017, 85, 103-113.	1.5	68
44	Hard times for the Brazilian environment. Nature Ecology and Evolution, 2017, 1, 1213-1213.	3.4	35
45	Best practice for the use of scenarios for restoration planning. Current Opinion in Environmental Sustainability, 2017, 29, 14-25.	3.1	40
46	Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests. Science Advances, 2017, 3, e1701345.	4.7	360
47	Research priorities for managing the impacts and dependencies of business upon food, energy, water and the environment. Sustainability Science, 2017, 12, 319-331.	2.5	41
48	Reconciling rural development and ecological restoration: Strategies and policy recommendations for the Brazilian Atlantic Forest. Land Use Policy, 2017, 60, 419-426.	2.5	41
49	The role of natural regeneration to ecosystem services provision and habitat availability: a case study in the Brazilian Atlantic Forest. Biotropica, 2016, 48, 890-899.	0.8	45
50	How can higher-yield farming help to spare nature?. Science, 2016, 351, 450-451.	6.0	195
51	Creating space for largeâ€scale restoration in tropical agricultural landscapes. Frontiers in Ecology and the Environment, 2015, 13, 211-218.	1.9	121
52	Biophysical suitability, economic pressure and land-cover change: a global probabilistic approach and insights for REDD+. Sustainability Science, 2014, 9, 129-141.	2.5	11
53	Suriname: Reconciling agricultural development and conservation of unique natural wealth. Land Use Policy, 2014, 38, 627-636.	2.5	19
54	Evaluating impacts of development and conservation projects using sustainability indicators: Opportunities and challenges. Environmental Impact Assessment Review, 2014, 48, 1-9.	4.4	55

#	Article	IF	CITATIONS
55	Pervasive transition of the Brazilian land-use system. Nature Climate Change, 2014, 4, 27-35.	8.1	407
56	Impacts of incentives to reduce emissions from deforestation on global species extinctions. Nature Climate Change, 2012, 2, 350-355.	8.1	99
57	Bringing Ecosystem Services into the Real World: An Operational Framework for Assessing the Economic Consequences of Losing Wild Nature. Environmental and Resource Economics, 2011, 48, 161-175.	1.5	126
58	On international equity in reducing emissions from deforestation. Environmental Science and Policy, 2010, 13, 742-753.	2.4	39
59	Reducing emissions from deforestation—The "combined incentives―mechanism and empirical simulations. Global Environmental Change, 2009, 19, 265-278.	3.6	151
60	Comparing climate and cost impacts of reference levels for reducing emissions from deforestation. Environmental Research Letters, 2009, 4, 044006.	2.2	71
61	ECOSYSTEM SERVICES AND ECONOMIC THEORY: INTEGRATION FOR POLICYâ€RELEVANT RESEARCH. Ecological Applications, 2008, 18, 2050-2067.	1.8	409