Robert Tarran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6510132/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chronic E-Cigarette Exposure Alters Human Alveolar Macrophage Morphology and Gene Expression. Nicotine and Tobacco Research, 2022, 24, 395-399.	2.6	9
2	Combustible and Electronic Cigarette Exposures Increase ACE2 Activity and SARS-CoV-2 Spike Binding. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 129-133.	5.6	8
3	A SPLUNC1 Peptidomimetic Inhibits Orai1 and Reduces Inflammation in a Murine Allergic Asthma Model. American Journal of Respiratory Cell and Molecular Biology, 2022, 66, 271-282.	2.9	11
4	E-Cigarettes and Cardiopulmonary Health: Review for Clinicians. Circulation, 2022, 145, 219-232.	1.6	36
5	The role of SPAG1 in the assembly of axonemal dyneins in human airway epithelia. Journal of Cell Science, 2022, 135, .	2.0	5
6	Vaping /Eâ€liquid Exposure Causes Dysregulation of Neutrophil Extracellular Trap formation. FASEB Journal, 2022, 36, .	0.5	0
7	SPLUNC1 is a negative regulator of the Orai1 Ca ²⁺ channel. Physiological Reports, 2022, 10, e15306.	1.7	1
8	Cardiopulmonary Consequences of Vaping in Adolescents: A Scientific Statement From the American Heart Association. Circulation Research, 2022, 131, .	4.5	24
9	Cellular effects of nicotine saltâ€containing eâ€liquids. Journal of Applied Toxicology, 2021, 41, 493-505.	2.8	18
10	Lipid-laden Macrophages Are Not Unique to Patients with E-Cigarette or Vaping Product Use–associated Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 1030-1033.	5.6	16
11	E-Cigarettes and Cardiopulmonary Health. Function, 2021, 2, zqab004.	2.3	36
12	JUUL e-liquid exposure elicits cytoplasmic Ca2+ responses and leads to cytotoxicity in cultured airway epithelial cells. Toxicology Letters, 2021, 337, 46-56.	0.8	12
13	Acute cigarette smoke or extract exposure rapidly activates TRPA1-mediated calcium influx in primary human airway smooth muscle cells. Scientific Reports, 2021, 11, 9643.	3.3	10
14	SPLUNC1: a novel marker of cystic fibrosis exacerbations. European Respiratory Journal, 2021, 58, 2000507.	6.7	20
15	A modified fluorescent sensor for reporting glucose concentration in the airway lumen. PLoS ONE, 2021, 16, e0254248.	2.5	1
16	New generation ENaC inhibitors detach cystic fibrosis airway mucus bundles via sodium/hydrogen exchanger inhibition. European Journal of Pharmacology, 2021, 904, 174123.	3.5	4
17	Culture with apically applied healthy or disease sputum alters the airway surface liquid proteome and ion transport across human bronchial epithelial cells. American Journal of Physiology - Cell Physiology, 2021, 321, C954-C963.	4.6	5
18	Flavored e-liquids increase cytoplasmic Ca ²⁺ levels in airway epithelia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L226-L241.	2.9	24

ROBERT TARRAN

#	Article	IF	CITATIONS
19	Epigenetic reprogramming in periodontal disease: Dynamic crosstalk with potential impact in oncogenesis. Periodontology 2000, 2020, 82, 157-172.	13.4	15
20	The SPLUNC1-βENaC complex prevents Burkholderia cenocepacia invasion in normal airway epithelia. Respiratory Research, 2020, 21, 190.	3.6	3
21	Eâ€cigarettes, nicotine, the lung and the brain: multiâ€ŀevel cascading pathophysiology. Journal of Physiology, 2020, 598, 5063-5071.	2.9	25
22	E-Cigarette or Vaping Product Use–associated Lung Injury: Developing a Research Agenda. An NIH Workshop Report. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 795-802.	5.6	42
23	Reactive Oxygen Species, Mitochondrial Membrane Potential, and Cellular Membrane Potential Are Predictors of E-Liquid Induced Cellular Toxicity. Nicotine and Tobacco Research, 2020, 22, S4-S13.	2.6	9
24	Early Studies of Respiratory Disease Associations with Nicotine and Tobacco Use. Nicotine and Tobacco Research, 2020, 22, S1-S3.	2.6	1
25	Loose ENDs: Electronic Nicotine Delivery Systems and the FDA's Recent Enforcement Policy. European Medical Journal Respiratory, 2020, 8, 93-96.	1.0	1
26	Chronic E-Cigarette Use Increases Neutrophil Elastase and Matrix Metalloprotease Levels in the Lung. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 1392-1401.	5.6	142
27	First clinical trials of novel ENaC targeting therapy, SPX-101, in healthy volunteers and adults with cystic fibrosis. Pulmonary Pharmacology and Therapeutics, 2019, 58, 101819.	2.6	16
28	E-Cigarette Exposure Delays Implantation and Causes Reduced Weight Gain in Female Offspring Exposed In Utero. Journal of the Endocrine Society, 2019, 3, 1907-1916.	0.2	38
29	Cigarette Smoke Exposure Induces Retrograde Trafficking of CFTR to the Endoplasmic Reticulum. Scientific Reports, 2019, 9, 13655.	3.3	26
30	SPLUNC1 Loses Its Antimicrobial Activity in Acidic Cystic Fibrosis Airway Secretions. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 633-636.	5.6	6
31	Chronic E-Cigarette Exposure Alters the Human Bronchial Epithelial Proteome. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 67-76.	5.6	176
32	SPLUNC1 is an allosteric modulator of the epithelial sodium channel. FASEB Journal, 2018, 32, 2478-2491.	0.5	33
33	Evaluation of a SPLUNC1-derived peptide for the treatment of cystic fibrosis lung disease. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 314, L192-L205.	2.9	28
34	Mucin Production and Hydration Responses to Mucopurulent Materials in Normal versus Cystic Fibrosis Airway Epithelia. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 481-491.	5.6	38
35	Slippery When Wet. Current Topics in Membranes, 2018, 81, 293-335.	0.9	27
36	SPLUNC1 degradation by the cystic fibrosis mucosal environment drives airway surface liquid dehydration. European Respiratory Journal, 2018, 52, 1800668.	6.7	28

ROBERT TARRAN

#	Article	IF	CITATIONS
37	Cigarette smoke modifies and inactivates SPLUNC1, leading to airway dehydration. FASEB Journal, 2018, 32, 6559-6574.	0.5	11
38	Evaluation of e-liquid toxicity using an open-source high-throughput screening assay. PLoS Biology, 2018, 16, e2003904.	5.6	124
39	Characterizing Exogenous Cell Engraftment for Cystic Fibrosis Cell Therapy. FASEB Journal, 2018, 32, 897.2.	0.5	1
40	Identification of BPIFA1/SPLUNC1 as an epithelium-derived smooth muscle relaxing factor. Nature Communications, 2017, 8, 14118.	12.8	39
41	Flavored e-cigarette liquids reduce proliferation and viability in the CALU3 airway epithelial cell line. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 313, L52-L66.	2.9	90
42	SPX-101 Is a Novel Epithelial Sodium Channel–targeted Therapeutic for Cystic Fibrosis That Restores Mucus Transport. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 734-744.	5.6	47
43	Little Cigars are More Toxic than Cigarettes and Uniquely Change the Airway Gene and Protein Expression. Scientific Reports, 2017, 7, 46239.	3.3	29
44	Adrenomedullin improves fertility and promotes pinopodes and cell junctions in the peri-implantation endometriumâ€. Biology of Reproduction, 2017, 97, 466-477.	2.7	30
45	E-Liquid Autofluorescence can be used as a Marker of Vaping Deposition and Third-Hand Vape Exposure. Scientific Reports, 2017, 7, 7459.	3.3	16
46	Short Palate, Lung, and Nasal Epithelial Clone 1 Has Antimicrobial and Antibiofilm Activities against the Burkholderia cepacia Complex. Antimicrobial Agents and Chemotherapy, 2016, 60, 6003-6012.	3.2	19
47	Will chronic e-cigarette use cause lung disease?. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L1398-L1409.	2.9	91
48	Airway hydration and COPD. Cellular and Molecular Life Sciences, 2015, 72, 3637-3652.	5.4	67
49	Automated acquisition and analysis of airway surface liquid height by confocal microscopy. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L109-L118.	2.9	19
50	Gaining the Upper Hand on Pulmonary Drug Delivery. Journal of Pharmacovigilance, 2014, 02, 118.	0.2	5
51	Cigarette Smoke-induced Ca2+ Release Leads to Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Dysfunction. Journal of Biological Chemistry, 2014, 289, 7671-7681.	3.4	84
52	Mammalian short palate lung and nasal epithelial clone 1 (SPLUNC1) in pH-dependent airway hydration. International Journal of Biochemistry and Cell Biology, 2014, 52, 130-135.	2.8	30
53	Molecular basis for pH-dependent mucosal dehydration in cystic fibrosis airways. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15973-15978.	7.1	160
54	Regulation of the epithelial Na+ channel and airway surface liquid volume by serine proteases. Pflugers Archiv European Journal of Physiology, 2010, 460, 1-17.	2.8	79

ROBERT TARRAN

#	Article	IF	CITATIONS
55	SPLUNC1 regulates airway surface liquid volume by protecting ENaC from proteolytic cleavage. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11412-11417.	7.1	149
56	In Vivo Versus In Vitro Airway Surface Liquid Nicotine Levels Following Cigarette Smoke Exposure. Journal of Analytical Toxicology, 2008, 32, 201-207.	2.8	69
57	Regulation of Airway Surface Liquid Volume and Mucus Transport by Active Ion Transport. Proceedings of the American Thoracic Society, 2004, 1, 42-46.	3.5	135
58	Loose ENDs: Electronic Nicotine Delivery Systems and the FDA's Recent Enforcement Policy. European Medical Journal Respiratory, 0, , 93-96.	1.0	1