Eva Nordberg Karlsson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6509861/publications.pdf

Version: 2024-02-01

132 papers 4,432 citations

36 h-index 59 g-index

149 all docs 149 docs citations

times ranked

149

5011 citing authors

#	Article	IF	CITATIONS
1	Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microbial Cell Factories, 2007, 6, 9.	4.0	459
2	Substituent Effects on in Vitro Antioxidizing Properties, Stability, and Solubility in Flavonoids. Journal of Agricultural and Food Chemistry, 2014, 62, 3321-3333.	5.2	176
3	Extraction and Modification of Macroalgal Polysaccharides for Current and Next-Generation Applications. Molecules, 2020, 25, 930.	3.8	125
4	Structural and Functional Analyses of \hat{l}^2 -Glucosidase 3B from Thermotoga neapolitana: A Thermostable Three-Domain Representative of Glycoside Hydrolase 3. Journal of Molecular Biology, 2010, 397, 724-739.	4.2	117
5	Endo-xylanases as tools for production of substituted xylooligosaccharides with prebiotic properties. Applied Microbiology and Biotechnology, 2018, 102, 9081-9088.	3.6	116
6	Subcritical water extraction and \hat{l}^2 -glucosidase-catalyzed hydrolysis of quercetin glycosides in onion waste. Green Chemistry, 2006, 8, 949-959.	9.0	114
7	Evaluation of the production of exopolysaccharides by two strains of the thermophilic bacterium Rhodothermus marinus. Carbohydrate Polymers, 2017, 156, 1-8.	10.2	109
8	Xylooligosaccharides from Hardwood and Cereal Xylans Produced by a Thermostable Xylanase as Carbon Sources for Lactobacillus brevis and Bifidobacterium adolescentis. Journal of Agricultural and Food Chemistry, 2013, 61, 7333-7340.	5.2	99
9	Purification and characterisation of acidocin D20079, a bacteriocin produced by Lactobacillus acidophilus DSM 20079. Journal of Biotechnology, 2005, 117, 343-354.	3.8	98
10	Mutational Tuning of Galectin-3 Specificity and Biological Function. Journal of Biological Chemistry, 2010, 285, 35079-35091.	3.4	98
11	Carbohydrate-binding modules from a thermostable Rhodothermus marinus xylanase: cloning, expression and binding studies. Biochemical Journal, 2000, 345, 53-60.	3.7	89
12	On-line detection of acetate formation in Escherichia coli cultures using dissolved oxygen responses to feed transients., 1999, 64, 590-598.		84
13	Carbohydrate-binding modules from a thermostable Rhodothermus marinus xylanase: cloning, expression and binding studies. Biochemical Journal, 2000, 345, 53.	3.7	77
14	Structural Considerations on the Use of Endo-Xylanases for the Production of prebiotic Xylooligosaccharides from Biomass. Current Protein and Peptide Science, 2017, 19, 48-67.	1.4	73
15	The Solution Structure of the CBM4-2 Carbohydrate Binding Module from a ThermostableRhodothermus marinusXylanaseâ€. Biochemistry, 2002, 41, 5712-5719.	2.5	68
16	Bioresource utilisation by sustainable technologies in new value-added biorefinery concepts – two case studies from food and forest industry. Journal of Cleaner Production, 2013, 57, 46-58.	9.3	66
17	A novel variant of Thermotoga neapolitana \hat{l}^2 -glucosidase B is an efficient catalyst for the synthesis of alkyl glucosides by transglycosylation. Journal of Biotechnology, 2007, 130, 67-74.	3.8	65
18	Extraction of water-soluble xylan from wheat bran and utilization of enzymatically produced xylooligosaccharides by Lactobacillus, Bifidobacterium and Weissella spp LWT - Food Science and Technology, 2014, 56, 321-327.	5.2	65

#	Article	IF	Citations
19	Production of prebiotic xylooligosaccharides from alkaline extracted wheat straw using the K80R-variant of a thermostable alkali-tolerant xylanase. Food and Bioproducts Processing, 2015, 93, 1-10.	3.6	59
20	Optimized expression of soluble cyclomaltodextrinase of thermophilic origin in Escherichia coli by using a soluble fusion-tag and by tuning of inducer concentration. Protein Expression and Purification, 2005, 39, 54-60.	1.3	52
21	Cloning and sequence of a thermostable multidomain xylanase from the bacterium Rhodothermus marinus. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1997, 1353, 118-124.	2.4	51
22	A carbohydrate binding module as a diversity-carrying scaffold. Protein Engineering, Design and Selection, 2004, 17, 213-221.	2.1	51
23	The Structure of Rhodothermus marinus Cel12A, A Highly Thermostable Family 12 Endoglucanase, at 1.8Ã Resolution. Journal of Molecular Biology, 2002, 320, 883-897.	4.2	48
24	Evidence for xylooligosaccharide utilization in <i>>Weissella </i> >strains isolated from Indian fermented foods and vegetables. FEMS Microbiology Letters, 2013, 346, 20-28.	1.8	48
25	Valorization of Brewer's spent grain to prebiotic oligosaccharide: Production, xylanase catalyzed hydrolysis, in-vitro evaluation with probiotic strains and in a batch human fecal fermentation model. Journal of Biotechnology, 2018, 268, 61-70.	3.8	48
26	Xylooligosaccharides Increase <i>Bifidobacteria</i> and <i>Lachnospiraceae</i> in Mice on a High-Fat Diet, with a Concomitant Increase in Short-Chain Fatty Acids, Especially Butyric Acid. Journal of Agricultural and Food Chemistry, 2021, 69, 3617-3625.	5.2	48
27	Exploring the possibility of using a thermostable mutant of \hat{l}^2 -glucosidase for rapid hydrolysis of quercetin glucosides in hot water. Green Chemistry, 2010, 12, 159-168.	9.0	47
28	Production of arabinoxylan-oligosaccharide mixtures of varying composition from rye bran by a combination of process conditions and type of xylanase. Bioresource Technology, 2014, 174, 118-125.	9.6	47
29	Integrated process for sequential extraction of saponins, xylan and cellulose from quinoa stalks (Chenopodium quinoa Willd.). Industrial Crops and Products, 2018, 121, 54-65.	5. 2	47
30	Cereal Byproducts Have Prebiotic Potential in Mice Fed a High-Fat Diet. Journal of Agricultural and Food Chemistry, 2014, 62, 8169-8178.	5.2	43
31	Mode of action of acidocin D20079, a bacteriocin produced by the potential probiotic strain, Lactobacillus acidophilus DSM 20079. Journal of Industrial Microbiology and Biotechnology, 2007, 34, 373-379.	3.0	42
32	Marine Poly- and Oligosaccharides as Prebiotics. Journal of Agricultural and Food Chemistry, 2018, 66, 11544-11549.	5.2	42
33	Enzymatic specificity and hydrolysis pattern of the catalytic domain of the xylanase Xyn1 from Rhodothermus marinus. Journal of Biotechnology, 1998, 60, 23-35.	3.8	41
34	Calcium Binding and Thermostability of Carbohydrate Binding Module CBM4-2 of Xyn10A fromRhodothermus marinusâ€. Biochemistry, 2002, 41, 5720-5729.	2.5	41
35	Improved Transferase/Hydrolase Ratio through Rational Design of a Family 1 \hat{l}^2 -Glucosidase from Thermotoga neapolitana. Applied and Environmental Microbiology, 2013, 79, 3400-3405.	3.1	40
36	Eliminating hydrolytic activity without affecting the transglycosylation of a GH1 \hat{l}^2 -glucosidase. Applied Microbiology and Biotechnology, 2017, 101, 1121-1131.	3.6	39

#	Article	IF	Citations
37	Probing the stability of the modular family 10 xylanase from Rhodothermus marinus. Extremophiles, 2003, 7, 483-491.	2.3	38
38	Engineered xyloglucan specificity in a carbohydrate-binding module. Glycobiology, 2006, 16, 1171-1180.	2.5	37
39	Xylo- and arabinoxylooligosaccharides from wheat bran by endoxylanases, utilisation by probiotic bacteria, and structural studies of the enzymes. Applied Microbiology and Biotechnology, 2018, 102, 3105-3120.	3.6	36
40	Structural basis for carbohydrate-binding specificityâ€"A comparative assessment of two engineered carbohydrate-binding modules. Glycobiology, 2012, 22, 948-961.	2.5	35
41	Extraction of soluble arabinoxylan from enzymatically pretreated wheat bran and production of short xylo-oligosaccharides and arabinoxylo-oligosaccharides from arabinoxylan by glycoside hydrolase family 10 and 11 endoxylanases. Journal of Biotechnology, 2017, 260, 53-61.	3.8	35
42	Effect of postinduction nutrient feed composition and use of lactose as inducer during production of thermostable xylanase in Escherichia coli glucose-limited fed-batch cultivations. Journal of Bioscience and Bioengineering, 2005, 99, 477-484.	2.2	34
43	Warming weather changes the chemical composition of oat hulls. Plant Biology, 2020, 22, 1086-1091.	3.8	32
44	Caloramator boliviensis sp. nov., a thermophilic, ethanol-producing bacterium isolated from a hot spring. International Journal of Systematic and Evolutionary Microbiology, 2012, 62, 1679-1686.	1.7	31
45	An on-line method for pressurized hot water extraction and enzymatic hydrolysis of quercetin glucosides from onions. Analytica Chimica Acta, 2013, 785, 50-59.	5.4	31
46	Efficient production of truncated thermostable xylanases from Rhodothermus marinus in Escherichia coli fed-batch cultures. Journal of Bioscience and Bioengineering, 1999, 87, 598-606.	2.2	30
47	Production of heterologous thermostable glycoside hydrolases and the presence of host-cell proteases in substrate limited fed-batch cultures of Escherichia coli BL21(DE3). Applied Microbiology and Biotechnology, 2002, 60, 408-416.	3.6	30
48	Two novel cyclodextrin-degrading enzymes isolated from thermophilic bacteria have similar domain structures but differ in oligomeric state and activity profile. Journal of Bioscience and Bioengineering, 2005, 100, 380-390.	2.2	30
49	Extraction of Glucuronoarabinoxylan from Quinoa Stalks (<i>Chenopodium quinoa</i> Willd.) and Evaluation of Xylooligosaccharides Produced by GH10 and GH11 Xylanases. Journal of Agricultural and Food Chemistry, 2017, 65, 8663-8673.	5.2	30
50	Evaluation of Sequential Processing for the Extraction of Starch, Lipids, and Proteins From Wheat Bran. Frontiers in Bioengineering and Biotechnology, 2019, 7, 413.	4.1	30
51	Aglycone specificity of Thermotoga neapolitana \hat{l}^2 -glucosidase 1A modified by mutagenesis, leading to increased catalytic efficiency in quercetin-3-glucoside hydrolysis. BMC Biochemistry, 2011, 12, 11.	4.4	29
52	Rational Enzyme Design without Structural Knowledge: A Sequenceâ€Based Approach for Efficient Generation of Transglycosylases. Chemistry - A European Journal, 2021, 27, 10323-10334.	3.3	29
53	Novel Members of Glycoside Hydrolase Family 13 Derived from Environmental DNA. Applied and Environmental Microbiology, 2008, 74, 1914-1921.	3.1	28
54	Arabinoxylanase from glycoside hydrolase family 5 is a selective enzyme for production of specific arabinoxylooligosaccharides. Food Chemistry, 2018, 242, 579-584.	8.2	28

#	Article	IF	Citations
55	Extraction of sugarcane bagasse arabinoxylan, integrated with enzymatic production of xylo-oligosaccharides and separation of cellulose. Biotechnology for Biofuels, 2021, 14, 153.	6.2	28
56	Carbohydrate-binding modules from a thermostable Rhodothermus marinus xylanase: cloning, expression and binding studies. Biochemical Journal, 2000, 345 Pt 1, 53-60.	3.7	28
57	Deletion of a cytotoxic, N-terminal putative signal peptide results in a significant increase in production yields in Escherichia coli and improved specific activity of Cel12A from Rhodothermus marinus. Applied Microbiology and Biotechnology, 2001, 55, 578-584.	3.6	27
58	The modular xylanase Xyn10A fromRhodothermus marinusis cell-attached, and its C-terminal domain has several putative homologues among cell-attached proteins within the phylum Bacteroidetes. FEMS Microbiology Letters, 2004, 241, 233-242.	1.8	27
59	Novel xylan-binding properties of an engineered family 4 carbohydrate-binding module. Biochemical Journal, 2007, 406, 209-214.	3.7	26
60	Capture of bacteriocins directly from non-clarified fermentation broth using macroporous monolithic cryogels with phenyl ligands. Enzyme and Microbial Technology, 2007, 40, 786-793.	3.2	26
61	The methylotrophic yeast as a host for the expression and production of thermostable xylanase from the bacterium. FEMS Yeast Research, 2005, 5, 839-850.	2.3	25
62	Affinity maturation generates greatly improved xyloglucan-specific carbohydrate binding modules. BMC Biotechnology, 2009, 9, 92.	3.3	24
63	Lignocellulose degradation for the bioeconomy: The potential of enzyme synergies between xylanases, ferulic acid esterase and laccase for the production of arabinoxylo-oligosaccharides. Bioresource Technology, 2022, 343, 126114.	9.6	24
64	Evidence for substrate binding of a recombinant thermostable xylanase originating fromRhodothermus marinus. FEMS Microbiology Letters, 1998, 168, 1-7.	1.8	23
65	Characterization of a family 43 \hat{l}^2 -xylosidase from the xylooligosaccharide utilizing putative probiotic <i>Weissella</i> sp. strain 92. Glycobiology, 2016, 26, 193-202.	2.5	23
66	Immobilization of thermostable \hat{l}^2 -glucosidase variants on acrylic supports for biocatalytic processes in hot water. Journal of Molecular Catalysis B: Enzymatic, 2012, 80, 28-38.	1.8	22
67	Dimerisation and an Increase in Active Site Aromatic Groups as Adaptations to High Temperatures: X-ray Solution Scattering and Substrate-bound Crystal Structures of Rhodothermus marinus Endoglucanase Cel12A. Journal of Molecular Biology, 2006, 356, 57-71.	4.2	21
68	A cultivation technique for E. coli fed-batch cultivations operating close to the maximum oxygen transfer capacity of the reactor. Biotechnology Letters, 2005, 27, 983-990.	2.2	20
69	Characterization of cyclodextrin glycosyltransferases (CGTases) and their application for synthesis of alkyl glycosides with oligomeric head group. Process Biochemistry, 2015, 50, 722-728.	3.7	19
70	\hat{l}^2 -Mannanase-catalyzed synthesis of alkyl mannooligosides. Applied Microbiology and Biotechnology, 2018, 102, 5149-5163.	3.6	19
71	Evolution of a carbohydrate binding module into a protein-specific binder. New Biotechnology, 2006, 23, 111-117.	2.7	18
72	Characterization of the Properties of for Probiotic or Protective Culture Use. Journal of Food Protection, 2010, 73, 960-966.	1.7	18

#	Article	IF	Citations
73	Title is missing!. Biotechnology Letters, 2000, 22, 663-669.	2.2	17
74	Characterization of the substitution pattern of cellulose derivatives using carbohydrate-binding modules. BMC Biotechnology, 2014, 14, 113.	3.3	17
75	Threeâ€dimensional structures and functional studies of two <scp>GH</scp> 43 arabinofuranosidases from <i>Weissella</i> sp. strain 142 and <i>LactobacillusÂbrevis</i> FEBS Journal, 2017, 284, 2019-2036.	4.7	16
76	Going to extremes $\hat{a} \in \hat{a}$ a metagenomic journey into the dark matter of life. FEMS Microbiology Letters, 2021, 368, .	1.8	16
77	Production of a lipolytic enzyme originating from Bacillus halodurans LBB2 in the methylotrophic yeast Pichia pastoris. Applied Microbiology and Biotechnology, 2006, 71, 463-472.	3.6	15
78	Phylogenetic analysis and substrate specificity of GH2 βâ€mannosidases from <i>Aspergillus</i> species. FEBS Letters, 2013, 587, 3444-3449.	2.8	15
79	Glycosynthases from Thermotoga neapolitana \hat{l}^2 -glucosidase 1A: A comparison of \hat{l} ±-glucosyl fluoride and in situ-generated \hat{l} ±-glycosyl formate donors. Journal of Molecular Catalysis B: Enzymatic, 2014, 107, 132-139.	1.8	15
80	The Catalytic Acid–Base in GH109 Resides in a Conserved GGHGG Loop and Allows for Comparable α-Retaining and β-Inverting Activity in an <i>N</i> -Acetylgalactosaminidase from <i>Akkermansia muciniphila</i> . ACS Catalysis, 2020, 10, 3809-3819.	11.2	15
81	Taxogenomic assessment and genomic characterisation of Weissella cibaria strain 92 able to metabolise oligosaccharides derived from dietary fibres. Scientific Reports, 2020, 10, 5853.	3.3	15
82	Identification of Phlorotannins in the Brown Algae, Saccharina latissima and Ascophyllum nodosum by Ultra-High-Performance Liquid Chromatography Coupled to High-Resolution Tandem Mass Spectrometry. Molecules, 2021, 26, 43.	3.8	15
83	Citrate synthase from Thermus aquaticus: a thermostable bacterial enzyme with a five-membered inter-subunit ionic network. Extremophiles, 2003, 7, 9-16.	2.3	14
84	Structural insights of Rm Xyn10A – A prebiotic-producing GH10 xylanase with a non-conserved aglycone binding region. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2018, 1866, 292-306.	2.3	14
85	Carbohydrate binding module recognition of xyloglucan defined by polar contacts with branching xyloses and <scp>CH</scp> â€i interactions. Proteins: Structure, Function and Bioinformatics, 2014, 82, 3466-3475.	2.6	13
86	Composition analysis and minimal treatments to solubilize polysaccharides from the brown seaweed Laminaria digitata for microbial growth of thermophiles. Journal of Applied Phycology, 2020, 32, 1933-1947.	2.8	13
87	Cultivation of the gut bacterium <i>Prevotella copri</i> DSM 18205 ^T using glucose and xylose as carbon sources. MicrobiologyOpen, 2021, 10, e1213.	3.0	13
88	Ultrasound Assisted Alkaline Preâ€treatment Efficiently Solubilises Hemicellulose from Oat Hulls. Waste and Biomass Valorization, 2021, 12, 5371-5381.	3.4	12
89	Rhodothermus marinus: a thermophilic bacterium producing dimeric and hexameric citrate synthase isoenzymes. Extremophiles, 2002, 6, 51-56.	2.3	11
90	Differences and similarities in enzymes from the neopullulanase subfamily isolated from thermophilic species. Biologia (Poland), 2008, 63, 1006-1014.	1.5	11

#	Article	IF	CITATIONS
91	The crystal structure of XGâ€34, an evolved xyloglucanâ€specific carbohydrateâ€binding module. Proteins: Structure, Function and Bioinformatics, 2010, 78, 785-789.	2.6	11
92	Microbial Glycoside Hydrolases for Biomass Utilization in Biofuels Applications. , 2013, , 171-188.	_	11
93	Enzyme synergy for the production of arabinoxylo-oligosaccharides from highly substituted arabinoxylan and evaluation of their prebiotic potential. LWT - Food Science and Technology, 2020, 131, 109762.	5.2	11
94	Glucuronosylated and linear xylooligosaccharides from Quinoa stalks xylan as potential prebiotic source for growth of Bifidobacterium adolescentis and Weissella cibaria. LWT - Food Science and Technology, 2021, 152, 112348.	5 . 2	11
95	Integrated flow-injection processing for on-line quantification of plasmid DNA during cultivation of coli. Biotechnology and Bioengineering, 2001, 73, 406-411.	3.3	10
96	The Modular Organisation and Stability of a Thermostable Family 10 Xylanase. Biocatalysis and Biotransformation, 2003, 21, 253-260.	2.0	10
97	Opportunities for seaweed biorefinery. , 2020, , 3-31.		10
98	Preparation of two glycoside hydrolases for use in micro-aqueous media. Journal of Molecular Catalysis B: Enzymatic, 2014, 108, 1-6.	1.8	9
99	Rational design of a thermostable glycoside hydrolase from family 3 introduces Î ² -glycosynthase activity. Glycobiology, 2017, 27, 165-175.	2.5	9
100	Characterization and diversity of the complete set of GH family 3 enzymes from Rhodothermus marinus DSM 4253. Scientific Reports, 2020, 10, 1329.	3.3	9
101	Novel xylan degrading enzymes from polysaccharide utilizing loci of <i>Prevotella copri</i> DSM18205. Glycobiology, 2021, 31, 1330-1349.	2.5	9
102	Crystal structures of the <i>Bacillus subtilis </i> prophage lytic cassette proteins XepA and YomS. Acta Crystallographica Section D: Structural Biology, 2019, 75, 1028-1039.	2.3	9
103	A CGTase with high coupling activity using \hat{I}^3 -cyclodextrin isolated from a novel strain clustering under the genus Carboxydocella. Glycobiology, 2015, 25, 514-523.	2.5	8
104	A GH57 4-α-glucanotransferase of hyperthermophilic origin with potential for alkyl glycoside production. Applied Microbiology and Biotechnology, 2015, 99, 7101-7113.	3.6	8
105	Expression, purification, crystallization and preliminary X-ray diffraction analysis of <i>Thermotoga neapolitana </i> $ \hat{i} ^2$ -glucosidase B. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 802-806.	0.7	7
106	A cellulolytic Hypocrea strain isolated from South American brave straw produces a modular xylanase. Carbohydrate Research, 2012, 356, 215-223.	2.3	7
107	Crystal structure of β-glucosidase 1A from <i>Thermotoga neapolitana</i> and comparison of active site mutants for hydrolysis of flavonoid glucosides. Proteins: Structure, Function and Bioinformatics, 2017, 85, 872-884.	2.6	7
108	Engineering CGTase to improve synthesis of alkyl glycosides. Glycobiology, 2021, 31, 603-612.	2.5	7

#	Article	IF	CITATIONS
109	Characterisation of two novel cyclodextrinases using on-line microdialysis sampling with high-performance anion exchange chromatography. Analytical and Bioanalytical Chemistry, 2006, 385, 1421-1429.	3.7	6
110	Microwave-assisted xylanase reaction: impact in the production of prebiotic xylooligosaccharides. RSC Advances, 2021, 11, 11882-11888.	3.6	6
111	Title is missing!. Biotechnology Letters, 2001, 23, 1135-1140.	2.2	5
112	Production and physicochemical characterization of acidocin D20079, a bacteriocin produced by Lactobacillus acidophilus DSM 20079. World Journal of Microbiology and Biotechnology, 2007, 23, 911-921.	3.6	5
113	A novel direct screening method for alkyl glucoside production by glucosidases expressed in E. coli in 96-well plates. Journal of Biotechnology, 2010, 145, 186-192.	3.8	5
114	Engineering the carotenoid biosynthetic pathway in Rhodothermus marinus for lycopene production. Metabolic Engineering Communications, 2020, 11, e00140.	3.6	5
115	Chemical and biochemical bleaching of oat hulls: The effect of hydrogen peroxide, laccase, xylanase and sonication on optical properties and chemical composition. Biotechnology Reports (Amsterdam,) Tj $ETQq1\ 1$	0 :7.8 4314	· rgBT /Overlo
116	Endo-xylanases from Cohnella sp. AR92 aimed at xylan and arabinoxylan conversion into value-added products. Applied Microbiology and Biotechnology, 2021, 105, 6759-6778.	3.6	5
117	Crystal structure and initial characterization of a novel archaeal-like Holliday junction-resolving enzyme from <i>Thermus thermophilus</i> phage Tth15-6. Acta Crystallographica Section D: Structural Biology, 2022, 78, 212-227.	2.3	5
118	Virtually complete 1H, 13C and 15N resonance assignments of the second family 4 xylan binding module of Rhodothermus marinus xylanase 10A. Journal of Biomolecular NMR, 2002, 22, 187-188.	2.8	4
119	Title is missing!. Biotechnology Letters, 2002, 24, 1191-1197.	2.2	4
120	Glycoside Hydrolases for Extraction and Modification of Polyphenolic Antioxidants., 2013,, 9-21.		4
121	Development of the Nordic Bioeconomy. TemaNord, 2016, , .	1.3	4
122	Complexation of alkyl glycosides with \hat{l}_{\pm} -cyclodextrin can have drastically different effects on their conversion by glycoside hydrolases. Journal of Biotechnology, 2015, 200, 52-58.	3.8	3
123	Data on saponins, xylan and cellulose yield obtained from quinoa stalks after pressurized hot water extraction. Data in Brief, 2018, 20, 289-292.	1.0	3
124	Modeled 3D-Structures of Proteobacterial Transglycosylases from Glycoside Hydrolase Family 17 Give Insight in Ligand Interactions Explaining Differences in Transglycosylation Products. Applied Sciences (Switzerland), 2021, 11, 4048.	2.5	3
125	Exploring Codon Adjustment Strategies towards Escherichia coli-Based Production of Viral Proteins Encoded by HTH1, a Novel Prophage of the Marine Bacterium Hypnocyclicus thermotrophus. Viruses, 2021, 13, 1215.	3.3	3
126	Investigation of Structural Features of Two Related Lipases and the Impact on Fatty Acid Specificity in Vegetable Fats. International Journal of Molecular Sciences, 2022, 23, 7072.	4.1	3

#	Article	IF	CITATIONS
127	Molecular engineering of a thermostable carbohydrate-binding module. Biocatalysis and Biotransformation, 2006, 24, 31-37.	2.0	2
128	Altering the water holding capacity of potato pulp via structural modifications of the pectic polysaccharides. Carbohydrate Polymer Technologies and Applications, 2021, 2, 100153.	2.6	2
129	Evidence for substrate binding of a recombinant thermostable xylanase originating from Rhodothermus marinus. FEMS Microbiology Letters, 1998, 168, 1-7.	1.8	1
130	Cover Image, Volume 85, Issue 5. Proteins: Structure, Function and Bioinformatics, 2017, 85, C4-C4.	2.6	0
131	Cover Image, Volume 85, Issue 6. Proteins: Structure, Function and Bioinformatics, 2017, 85, C4.	2.6	0
132	Development of a Sustainable Method for Modification of polyphenolic glucosides. , 2012, , .		0