Norihisa Mikami

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/650965/publications.pdf Version: 2024-02-01

NODIHISA MIKAMI

#	Article	IF	CITATIONS
1	Regulatory T Cells and Human Disease. Annual Review of Immunology, 2020, 38, 541-566.	21.8	552
2	Calcitonin Gene-Related Peptide Is an Important Regulator of Cutaneous Immunity: Effect on Dendritic Cell and T Cell Functions. Journal of Immunology, 2011, 186, 6886-6893.	0.8	110
3	Slc3a2 Mediates Branched-Chain Amino-Acid-Dependent Maintenance of Regulatory T Cells. Cell Reports, 2017, 21, 1824-1838.	6.4	95
4	Calcitonin Receptor Signaling Inhibits Muscle Stem Cells from Escaping the Quiescent State and the Niche. Cell Reports, 2015, 13, 302-314.	6.4	88
5	Conversion of antigen-specific effector/memory T cells into Foxp3-expressing T _{reg} cells by inhibition of CDK8/19. Science Immunology, 2019, 4, .	11.9	74
6	Epigenetic conversion of conventional T cells into regulatory T cells by CD28 signal deprivation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12258-12268.	7.1	60
7	Immuno-Navigator, a batch-corrected coexpression database, reveals cell type-specific gene networks in the immune system. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2393-402.	7.1	58
8	Calcitonin gene-related peptide enhances experimental autoimmune encephalomyelitis by promoting Th17-cell functions. International Immunology, 2012, 24, 681-691.	4.0	44
9	Distinct Foxp3 enhancer elements coordinate development, maintenance, and function of regulatory TÂcells. Immunity, 2021, 54, 947-961.e8.	14.3	39
10	Calcitonin Gene-Related Peptide and Cyclic Adenosine 5′-Monophosphate/Protein Kinase A Pathway Promote IL-9 Production in Th9 Differentiation Process. Journal of Immunology, 2013, 190, 4046-4055.	0.8	37
11	Calcitonin Gene-Related Peptide Regulates Type IV Hypersensitivity through Dendritic Cell Functions. PLoS ONE, 2014, 9, e86367.	2.5	32
12	New Treg cell-based therapies of autoimmune diseases: towards antigen-specific immune suppression. Current Opinion in Immunology, 2020, 67, 36-41.	5.5	29
13	Lamtor1 Is Critically Required for CD4+ T Cell Proliferation and Regulatory T Cell Suppressive Function. Journal of Immunology, 2017, 199, 2008-2019.	0.8	16
14	Neuronal Derivative Mediators That Regulate Cutaneous Inflammations. Critical Reviews in Immunology, 2012, 32, 307-320.	0.5	13
15	Characterization of a TNFR2-Selective Agonistic TNF-α Mutant and Its Derivatives as an Optimal Regulatory T Cell Expander. Journal of Immunology, 2021, 206, 1740-1751.	0.8	12
16	Combination treatment with fingolimod and a pathogenic antigen prevents relapse of glucoseâ€6â€phosphate isomerase peptideâ€induced arthritis. Immunity, Inflammation and Disease, 2016, 4, 263-273.	2.7	11
17	<scp>CD</scp> 28 signals the differential control of regulatory <scp>T</scp> cells and effector <scp>T</scp> cells. European Journal of Immunology, 2014, 44, 955-957.	2.9	10
18	Suppression of ovalbumin-induced allergic diarrhea by diminished intestinal peristalsis in RAMP1-deficient mice. Biochemical and Biophysical Research Communications, 2011, 410, 389-393.	2.1	8

Norihisa Mikami

#	Article	IF	CITATIONS
19	Brazilian green propolis promotes TNFR2 expression on regulatory T cells. Food Science and Nutrition, 2021, 9, 3200-3208.	3.4	5
20	Functional Mechanism(s) of the Inhibition of Disease Progression by Combination Treatment with Fingolimod Plus Pathogenic Antigen in a Glucose-6-phosphate Isomerase Peptide-Induced Arthritis Mouse Model. Biological and Pharmaceutical Bulletin, 2015, 38, 1120-1125.	1.4	4
21	Transcription Factors Downstream of IL-4 and TGF-β Signals: Analysis by Quantitative PCR, Western Blot, and Flow Cytometry. Methods in Molecular Biology, 2017, 1585, 141-153.	0.9	4
22	Mechanism of induction of immune tolerance in experimental autoimmune encephalomyelitis by combination treatment with fingolimod plus pathogenic autoantigen. Clinical and Experimental Neuroimmunology, 2015, 6, 49-56.	1.0	2
23	Characterization of an Expanded IL-10-Producing-Suppressive T Cell Population Associated with Immune Tolerance. Biological and Pharmaceutical Bulletin, 2021, 44, 585-589.	1.4	2
24	Therapeutic strategy for rheumatoid arthritis by induction of myeloid-derived suppressor cells with high suppressive potential. Biological and Pharmaceutical Bulletin, 2022, , .	1.4	0