Timothy P Cripe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6508731/publications.pdf

Version: 2024-02-01

172457 233421 2,274 73 29 citations h-index papers

45 g-index 74 74 74 3667 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Novel Class of Anticancer Compounds Targets the Actin Cytoskeleton in Tumor Cells. Cancer Research, 2013, 73, 5169-5182.	0.9	155
2	Phase 1 Study of Intratumoral Pexa-Vec (JX-594), an Oncolytic and Immunotherapeutic Vaccinia Virus, in Pediatric Cancer Patients. Molecular Therapy, 2015, 23, 602-608.	8.2	132
3	Shorter-Duration Therapy Using Vincristine, Dactinomycin, and Lower-Dose Cyclophosphamide With or Without Radiotherapy for Patients With Newly Diagnosed Low-Risk Rhabdomyosarcoma: A Report From the Soft Tissue Sarcoma Committee of the Children's Oncology Group. Journal of Clinical Oncology. 2014, 32, 3547-3552.	1.6	123
4	Immunotherapy for osteosarcoma: Where do we go from here?. Pediatric Blood and Cancer, 2018, 65, e27227.	1.5	117
5	Intratumoral Injection of HSV1716, an Oncolytic Herpes Virus, Is Safe and Shows Evidence of Immune Response and Viral Replication in Young Cancer Patients. Clinical Cancer Research, 2017, 23, 3566-3574.	7.0	105
6	Nothing but NET: A review of norepinephrine transporter expression and efficacy of ¹³¹ lâ€mlBG therapy. Pediatric Blood and Cancer, 2015, 62, 5-11.	1.5	77
7	Pediatric Cancer Immunotherapy: Opportunities and Challenges. Paediatric Drugs, 2018, 20, 395-408.	3.1	76
8	Going back to class I: MHC and immunotherapies for childhood cancer. Pediatric Blood and Cancer, 2015, 62, 571-576.	1.5	68
9	Oncolytic HSV-1 Virotherapy: Clinical Experience and Opportunities for Progress. Current Pharmaceutical Biotechnology, 2012, 13, 1842-1851.	1.6	62
10	Cooperation of Oncolytic Herpes Virotherapy and PD-1 Blockade in Murine Rhabdomyosarcoma Models. Scientific Reports, 2017, 7, 2396.	3.3	62
11	Bortezomib-Induced Unfolded Protein Response Increases Oncolytic HSV-1 Replication Resulting in Synergistic Antitumor Effects. Clinical Cancer Research, 2014, 20, 3787-3798.	7.0	61
12	Reduction of cyclophosphamide dose for patients with subset 2 lowâ€risk rhabdomyosarcoma is associated with an increased risk of recurrence: A report from the Soft Tissue Sarcoma Committee of the Children's Oncology Group. Cancer, 2017, 123, 2368-2375.	4.1	60
13	Preclinical assessments of the MEK inhibitor PD-0325901 in a mouse model of neurofibromatosis type 1. Pediatric Blood and Cancer, 2015, 62, 1709-1716.	1.5	59
14	Oncolytic virus and PD-1/PD-L1 blockade combination therapy. Oncolytic Virotherapy, 2018, Volume 7, 65-77.	6.0	57
15	Widespread intratumoral virus distribution with fractionated injection enables local control of large human rhabdomyosarcoma xenografts by oncolytic herpes simplex viruses. Cancer Gene Therapy, 2005, 12, 407-416.	4.6	47
16	Myelolytic Treatments Enhance Oncolytic Herpes Virotherapy in Models of Ewing Sarcoma by Modulating the Immune Microenvironment. Molecular Therapy - Oncolytics, 2018, 11, 62-74.	4.4	41
17	First-in-Human Intravenous Seprehvir in Young Cancer Patients: A Phase 1 Clinical Trial. Molecular Therapy, 2019, 27, 1930-1938.	8.2	41
18	Immune profiling of NF1-associated tumors reveals histologic subtype distinctions and heterogeneity: implications for immunotherapy. Oncotarget, 2017, 8, 82037-82048.	1.8	41

#	Article	IF	CITATIONS
19	Malignant peripheral nerve sheath tumors with high and low Ras-GTP are permissive for oncolytic herpes simplex virus mutants. Pediatric Blood and Cancer, 2006, 46, 745-754.	1.5	39
20	Identification of Cancer-Targeted Tropomyosin Inhibitors and Their Synergy with Microtubule Drugs. Molecular Cancer Therapeutics, 2017, 16, 1555-1565.	4.1	38
21	GD2â€directed CARâ€T cells in combination with HGFâ€targeted neutralizing antibody (AMG102) prevent primary tumor growth and metastasis in Ewing sarcoma. International Journal of Cancer, 2020, 146, 3184-3195.	5.1	37
22	To Infection and Beyond: The Multi-Pronged Anti-Cancer Mechanisms of Oncolytic Viruses. Viruses, 2016, 8, 43.	3.3	36
23	Oncolytic herpes simplex virus mutants are more efficacious than wildâ€type adenovirus Type 5 for the treatment of highâ€risk neuroblastomas in preclinical models. Pediatric Blood and Cancer, 2005, 44, 469-478.	1.5	35
24	Tumor-Associated Macrophages in Oncolytic Virotherapy: Friend or Foe?. Biomedicines, 2016, 4, 13.	3.2	35
25	Oncolytic Herpes Virus rRp450 Shows Efficacy in Orthotopic Xenograft Group 3/4 Medulloblastomas and Atypical Teratoid/Rhabdoid Tumors. Molecular Therapy - Oncolytics, 2017, 6, 22-30.	4.4	35
26	VEGF Blockade Enables Oncolytic Cancer Virotherapy in Part by Modulating Intratumoral Myeloid Cells. Molecular Therapy, 2013, 21, 1014-1023.	8.2	34
27	Differential Susceptibility of Pediatric Sarcoma Cells to Oncolysis by Conditionally Replication-Competent Herpes Simplex Viruses. Journal of Pediatric Hematology/Oncology, 2002, 24, 447-453.	0.6	33
28	Oncolytic HSV virotherapy in murine sarcomas differentially triggers an antitumor T-cell response in the absence of virus permissivity. Molecular Therapy - Oncolytics, 2014, 1, 14010.	4.4	33
29	TGF- \hat{l}^2 Inhibition Improves Oncolytic Herpes Viroimmunotherapy in Murine Models of Rhabdomyosarcoma. Molecular Therapy - Oncolytics, 2017, 7, 17-26.	4.4	33
30	Advances in the diagnosis and management of cardiomyopathy in Duchenne muscular dystrophy. Neuromuscular Disorders, 2018, 28, 711-716.	0.6	29
31	GBM-Targeted oHSV Armed with Matrix Metalloproteinase 9 Enhances Anti-tumor Activity and Animal Survival. Molecular Therapy - Oncolytics, 2019, 15, 214-222.	4.4	28
32	Pediatric cancer research: Surviving COVIDâ€19. Pediatric Blood and Cancer, 2020, 67, e28435.	1.5	28
33	Doxorubicin Synergizes with 34.5ENVE to Enhance Antitumor Efficacy against Metastatic Ovarian Cancer. Clinical Cancer Research, 2014, 20, 6479-6494.	7.0	27
34	The Fc Domain of Immunoglobulin Is Sufficient to Bridge NK Cells with Virally Infected Cells. Immunity, 2017, 47, 159-170.e10.	14.3	27
35	Immunotherapeutic Challenges for Pediatric Cancers. Molecular Therapy - Oncolytics, 2019, 15, 38-48.	4.4	26
36	A Novel Pathogenic Variant in CARMIL2 (RLTPR) Causing CARMIL2 Deficiency and EBV-Associated Smooth Muscle Tumors. Frontiers in Immunology, 2020, 11, 884.	4.8	26

#	Article	IF	Citations
37	Aurora A kinase inhibition enhances oncolytic herpes virotherapy through cytotoxic synergy and innate cellular immune modulation. Oncotarget, 2017, 8, 17412-17427.	1.8	24
38	A Collaborative Model for Accelerating the Discovery and Translation of Cancer Therapies. Cancer Research, 2017, 77, 5706-5711.	0.9	22
39	High Mobility Group Box 1 Influences HSV1716 Spread and Acts as an Adjuvant to Chemotherapy. Viruses, 2018, 10, 132.	3.3	22
40	Immunotherapies for pediatric cancer: current landscape and future perspectives. Cancer and Metastasis Reviews, 2019, 38, 573-594.	5.9	20
41	Pediatric cancer gone viral. Part I: strategies for utilizing oncolytic herpes simplex virus-1 in children. Molecular Therapy - Oncolytics, 2015, 2, 15015.	4.4	19
42	Cardiorespiratory management of Duchenne muscular dystrophy: emerging therapies, neuromuscular genetics, and new clinical challenges. Lancet Respiratory Medicine, the, 2022, 10, 403-420.	10.7	19
43	Effect of Combined Cyclooxygenase-2 and Matrix Metalloproteinase Inhibition on Human Sarcoma Xenografts. Journal of Pediatric Hematology/Oncology, 2003, 25, 709-714.	0.6	17
44	Drug Targeting the Actin Cytoskeleton Potentiates the Cytotoxicity of Low Dose Vincristine by Abrogating Actin-Mediated Repair of Spindle Defects. Molecular Cancer Research, 2020, 18, 1074-1087.	3.4	15
45	Ewing Sarcoma Family of Tumors Express Adenovirus Receptors and Are Susceptible to Adenovirus-Mediated Oncolysis. Journal of Pediatric Hematology/Oncology, 2002, 24, 527-533.	0.6	12
46	Characterization of MHC Class I and βâ€2â€Microglobulin Expression in Pediatric Solid Malignancies to Guide Selection of Immuneâ€Based Therapeutic Trials. Pediatric Blood and Cancer, 2016, 63, 618-626.	1.5	12
47	Comparison of infectivity and spread between HSV-1 and HSV-2 based oncolytic viruses on tumor cells with different receptor expression profiles. Oncotarget, 2018, 9, 21348-21358.	1.8	12
48	Radiation therapy may increase metastatic potential in alveolar rhabdomyosarcoma. Pediatric Blood and Cancer, 2015, 62, 1550-1554.	1.5	11
49	Pediatric cancer gone viral. Part II: potential clinical application of oncolytic herpes simplex virus-1 in children. Molecular Therapy - Oncolytics, 2015, 2, 15016.	4.4	11
50	Immune profiles of desmoplastic small round cell tumor and synovial sarcoma suggest different immunotherapeutic susceptibility upfront compared to relapse specimens. Pediatric Blood and Cancer, 2018, 65, e27313.	1.5	11
51	Relationship of infusion duration to safety, efficacy, and pharmacodynamics (PD): Second part of a phase I-II study using VSV-IFNÎ ² -NIS (VV1) oncolytic virus in patients with refractory solid tumors Journal of Clinical Oncology, 2020, 38, 3090-3090.	1.6	10
52	EXLOITING GENETIC ALTERATIONS TO DESIGN NOVEL THERAPIES FOR CANCER. Hematology/Oncology Clinics of North America, 2001, 15, 657-675.	2.2	8
53	A multiyear quality improvement project to increase influenza vaccination in a pediatric oncology population undergoing active therapy. Pediatric Blood and Cancer, 2018, 65, e27268.	1.5	8
54	Emerging cancer-targeted therapies. Pediatric Clinics of North America, 2002, 49, 1339-1368.	1.8	7

#	Article	IF	CITATIONS
55	Leveraging gene therapy to achieve long-term continuous or controllable expression of biotherapeutics. Science Advances, 2022, 8, .	10.3	7
56	Therapeutic modulation of the CD47-SIRPÎ \pm axis in the pediatric tumor microenvironment: working up an appetite. , 2020, 3, 550-562.		6
57	Please stand by: how oncolytic viruses impact bystander cells. Future Virology, 2018, 13, 671-680.	1.8	5
58	Immunotherapies for Pediatric Solid Tumors: A Targeted Update. Paediatric Drugs, 2022, 24, 1-12.	3.1	5
59	Preparation and Evaluation of a Novel Class of Amphiphilic Amines as Antitumor Agents and Nanocarriers for Bioactive Molecules. Pharmaceutical Research, 2016, 33, 2722-2735.	3.5	3
60	Evidence for Oncolytic Viral Eradication of Cholesteatoma In Vitro. Otolaryngology - Head and Neck Surgery, 2019, 160, 891-893.	1.9	3
61	Gene Editing Thumbs a Ride with Oncolytic Virotherapy. Molecular Therapy, 2020, 28, 2103-2104.	8.2	3
62	Oncolytic Viruses and Their Potential as a Therapeutic Opportunity in Osteosarcoma. Advances in Experimental Medicine and Biology, 2020, 1258, 77-89.	1.6	3
63	The effect of emerging molecular and genetic therapies on cardiopulmonary disease in Duchenne muscular dystrophy. Pediatric Pulmonology, 2021, 56, 729-737.	2.0	2
64	A pediatric and young adult phase I dose escalation study of BXQ-350 for solid and central nervous system tumors Journal of Clinical Oncology, 2020, 38, 2541-2541.	1.6	2
65	Endogenous retrovirus envelope as a tumor-associated immunotherapeutic target in murine osteosarcoma. IScience, 2021, 24, 102759.	4.1	1
66	Eliciting an immune-mediated antitumor response through oncolytic herpes simplex virus-based shared antigen expression in tumors resistant to viroimmunotherapy., 2021, 9, e002939.		1
67	A phase I dose-escalation study of intratumoral herpes simplex virus-1 mutant HSV1716 in pediatric/young adult patients with refractory non-central nervous system solid tumors Journal of Clinical Oncology, 2013, 31, 10047-10047.	1.6	1
68	A Cationic Nanomicellar Complex of the Quaternary Amphiphilic Amine RC16+ with Fenretinide as a New Multitasking System for Antitumor Therapy. Current Drug Delivery, 2019, 16, 807-817.	1.6	1
69	Clinical outcomes and efficacy of stereotactic body radiation therapy in children, adolescents, and young adults with metastatic solid tumors. British Journal of Radiology, 2022, 95, 20211088.	2.2	1
70	ET-27 * REPLICATION AND SPREAD OF ONCOLYTIC HERPES VIRUS IN GLIOMA STEM CELLS CAN BE ENHANCED BY SPECIFIC INHIBITION OF HISTONE DEACETYLASE 6. Neuro-Oncology, 2014, 16, v85-v85.	1.2	0
71	Pediatric Oral/Maxillofacial Soft Tissue Sarcomas: A Clinicopathologic Report of Four Cases. Case Reports in Oncology, 2016, 9, 447-453.	0.7	0
72	After Hollywood Opened the Door, What Do We See in the Halls of Academic Medicine?. Academic Medicine, 2018, 93, 1099-1100.	1.6	0

#	Article	IF	CITATIONS
73	Oncolytic virotherapy: a potential therapeutic approach for cholesteatoma. Current Opinion in Otolaryngology and Head and Neck Surgery, 2020, 28, 281-285.	1.8	O