Andrew G Tennyson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6507752/publications.pdf

Version: 2024-02-01

186265 223800 2,147 54 28 citations g-index h-index papers

57 57 57 2004 docs citations times ranked citing authors all docs

46

#	Article	IF	CITATIONS
1	Thermomorphological and mechanical properties of vulcanized octenyl succinate/terpenoid-derivatized corn starch composites. Materials Advances, 2022, 3, 4186-4193.	5.4	8
2	Inverse vulcanization of octenyl succinate-modified corn starch as a route to biopolymer–sulfur composites. Materials Advances, 2021, 2, 2391-2397.	5.4	20
3	An organometallic catalase mimic with exceptional activity, H ₂ O ₂ stability, and catalase/peroxidase selectivity. Dalton Transactions, 2021, 50, 15493-15501.	3.3	5
4	Facile new approach to high sulfur-content materials and preparation of sulfur–lignin copolymers. Journal of Materials Chemistry A, 2020, 8, 548-553.	10.3	37
5	Copolymerization of a Bisphenol a Derivative and Elemental Sulfur by the RASP Process. Sustainable Chemistry, 2020, 1, 183-197.	4.7	12
6	Robust, remeltable and remarkably simple to prepare biomass–sulfur composites. Materials Advances, 2020, 1, 2271-2278.	5 . 4	23
7	Recyclable, sustainable, and stronger than portland cement: a composite from unseparated biomass and fossil fuel waste. Materials Advances, 2020, 1, 590-594.	5 . 4	30
8	Green Synthesis of Thermoplastic Composites from a Terpenoid-Cellulose Ester. ACS Applied Polymer Materials, 2020, 2, 3761-3765.	4.4	26
9	Sulfur-Containing Polymers Prepared from Fatty Acid-Derived Monomers: Application of Atom-Economical Thiol-ene/Thiol-yne Click Reactions and Inverse Vulcanization Strategies. Sustainable Chemistry, 2020, 1, 209-237.	4.7	18
10	Polymer cements by copolymerization of waste sulfur, oleic acid, and pozzolan cements. Sustainable Chemistry and Pharmacy, 2020, 16, 100249.	3.3	28
11	Copolymers by Inverse Vulcanization of Sulfur with Pure or Technicalâ€Grade Unsaturated Fatty Acids. Journal of Polymer Science, 2020, 58, 438-445.	3 . 8	40
12	Copolymerization of an aryl halide and elemental sulfur as a route to high sulfur content materials. Polymer Chemistry, 2020, 11, 1621-1628.	3.9	28
13	Durable Cellulose–Sulfur Composites Derived from Agricultural and Petrochemical Waste. Advanced Sustainable Systems, 2019, 3, 1900062.	5.3	42
14	Combining agriculture and energy industry waste products to yield recyclable, thermally healable copolymers of elemental sulfur and oleic acid. Journal of Polymer Science Part A, 2019, 57, 1704-1710.	2.3	51
15	Hydrogen peroxide as a hydride donor and reductant under biologically relevant conditions. Chemical Science, 2019, 10, 2025-2033.	7.4	11
16	Valorisation of waste to yield recyclable composites of elemental sulfur and lignin. Journal of Materials Chemistry A, 2019, 7, 15683-15690.	10.3	80
17	Durable, acid-resistant copolymers from industrial by-product sulfur and microbially-produced tyrosine. RSC Advances, 2019, 9, 31460-31465.	3.6	35
18	Biologically-relevant radical reduction by a ruthenium catalyst. Free Radical Biology and Medicine, 2018, 128, S58.	2.9	0

#	Article	IF	CITATIONS
19	Thermally-healable network solids of sulfur-crosslinked poly(4-allyloxystyrene). RSC Advances, 2018, 8, 39074-39082.	3.6	36
20	Catalytic Radical Reduction in Aqueous Solution by a Ruthenium Hydride Intermediate. Angewandte Chemie, 2016, 128, 8698-8702.	2.0	1
21	Catalytic Radical Reduction in Aqueous Solution by a Ruthenium Hydride Intermediate. Angewandte Chemie - International Edition, 2016, 55, 8556-8560.	13.8	14
22	NAD ⁺ as a Hydride Donor and Reductant. Journal of the American Chemical Society, 2016, 138, 15833-15836.	13.7	14
23	Catalytic radical reduction in aqueous solution via oxidation of biologically-relevant alcohols. Chemical Science, 2016, 7, 4052-4058.	7.4	6
24	Redox-Active Ligands: An Advanced Tool To Modulate Polyethylene Microstructure. Journal of the American Chemical Society, 2016, 138, 774-777.	13.7	112
25	Preparation of poly(p-phenylene vinylene) derivatives by a debromination–chain polymerization–debromination sequence. European Polymer Journal, 2015, 70, 197-202.	5.4	0
26	Net charge effects in N-heterocyclic carbene–ruthenium complexes with similar oxidation states and coordination geometries. Inorganica Chimica Acta, 2015, 435, 320-326.	2.4	8
27	Synthesis, coordination chemistry and reactivity of transition metal complexes supported by a chelating benzimidazolylidene carboxylate ligand. Inorganica Chimica Acta, 2015, 426, 29-38.	2.4	22
28	Conjugated Polymers Featuring Oxacyclophaneâ€Scaffolded Ï€â€Stacking Interactions. Macromolecular Chemistry and Physics, 2014, 215, 351-357.	2.2	3
29	Conjugated polymers with m-pyridine linkages: synthesis, photophysics, solution structure and film morphology. Journal of Materials Chemistry C, 2014, 2, 8113-8121.	5.5	0
30	Donor–Acceptor 1,4â€Fluorenylene Chromophores: Photophysics, Electrochemistry, and Synthesis through a Route for Asymmetric Chromophore Preparation. European Journal of Organic Chemistry, 2014, 2014, 5998-6009.	2.4	0
31	Comparison of 1,4-distyrylfluorene and 1,4-distyrylbenzene analogues: synthesis, structure, electrochemistry and photophysics. Organic and Biomolecular Chemistry, 2013, 11, 5425.	2.8	20
32	Bipyridyl-modified phosphonium polyelectrolytes: synthesis, photophysics, metal ion coordination and layer-by-layer assembly with anionic conjugated polymers. Polymer Chemistry, 2013, 4, 5387.	3.9	14
33	Synthesis, photophysical and electrochemical properties of conjugated polymers incorporating 9,9-dialkyl-1,4-fluorenylene units with thiophene, carbazole and triarylamine comonomers. Polymer Chemistry, 2012, 3, 3318.	3.9	3
34	Sterically Encumbered Bipyridyl-Derivatized Conjugated Polymers and Metallopolymers Incorporating Phenylenevinylene, Phenyleneethynylene, and Fluorenylene Segments. Macromolecules, 2012, 45, 6344-6352.	4.8	20
35	Advances in bis(<i>N</i> â€heterocyclic carbene) chemistry: new classes of structurally dynamic materials. Journal of Physical Organic Chemistry, 2012, 25, 531-543.	1.9	59
36	Generation, Translocation, and Action of Nitric Oxide in Living Systems. Chemistry and Biology, 2011, 18, 1211-1220.	6.0	85

3

#	Article	lF	CITATIONS
37	Methylation of Ylideneâ€Triazenes: Insight and Guidance for 1,3â€Dipolar Cycloaddition Reactions. European Journal of Organic Chemistry, 2010, 2010, 6277-6282.	2.4	22
38	Quinobis(imidazolylidene): Synthesis and Study of an Electronâ€Configurable Bis(Nâ€Heterocyclic) Tj ETQq0 0	0 rgBJ /Ov	erlock 10 Tf 5
39	A Seven-Membered <i>N,N</i> ′-Diamidocarbene. Organometallics, 2010, 29, 4569-4578.	2.3	117
40	Mechanical Activation of Catalysts for Câ^'C Bond Forming and Anionic Polymerization Reactions from a Single Macromolecular Reagent. Journal of the American Chemical Society, 2010, 132, 16631-16636.	13.7	79
41	Structurally Dynamic Conjugated Polymers. Macromolecules, 2010, 43, 6923-6935.	4.8	31
42	Arrested Catalysis: Controlling Kumada Coupling Activity via a Redox-Active N-Heterocyclic Carbene. Journal of the American Chemical Society, 2010, 132, 9420-9429.	13.7	130
43	Synthesis and Study of $5,5\hat{a}\in^2$ -Bibenzimidazolylidenes and Their Bimetallic Complexes. European Journal of Inorganic Chemistry, 2009, 2009, 1729-1738.	2.0	56
44	Adapting Nâ€Heterocyclic Carbene/Azide Coupling Chemistry for Polymer Synthesis: Enabling Access to Aromatic Polytriazenes. Angewandte Chemie - International Edition, 2009, 48, 5187-5190.	13.8	70
45	Bimetallic N-Heterocyclic Carbeneâ^'Iridium Complexes: Investigating Metalâ^'Metal and Metalâ^'Ligand Communication via Electrochemistry and Phosphorescence Spectroscopy. Inorganic Chemistry, 2009, 48, 6924-6933.	4.0	101
46	Redox-Active N-Heterocyclic Carbenes: Design, Synthesis, and Evaluation of Their Electronic Properties. Organometallics, 2009, 28, 6695-6706.	2.3	124
47	Indirectly Connected Bis(N-Heterocyclic Carbene) Bimetallic Complexes: Dependence of Metalâ^Metal Electronic Coupling on Linker Geometry. Organometallics, 2009, 28, 5142-5147.	2.3	35
48	Oxidation of poly(enetetramine)s: a new strategy for the synthesis of conjugated polyelectrolytes. Chemical Communications, 2009, , 2124.	4.1	66
49	Synthesis and Characterization of {Ni(NO)} ¹⁰ and {Co(NO) ₂ } ¹⁰ Complexes Supported by Thiolate Ligands. Journal of the American Chemical Society, 2008, 130, 15087-15098.	13.7	35
50	Selective fluorescence detection of nitroxyl over nitric oxide in buffered aqueous solution using a conjugated metallopolymer. Polyhedron, 2007, 26, 4625-4630.	2.2	37
51	Luminescent Properties of Water-Soluble Conjugated Metallopolymers and Their Application to Fluorescent Nitric Oxide Detection. Inorganic Chemistry, 2006, 45, 8998-9005.	4.0	29
52	Polymer-Bound Dirhodium Tetracarboxylate Films for Fluorescent Detection of Nitric Oxide. Inorganic Chemistry, 2006, 45, 6222-6226.	4.0	29
53	Conjugated Metallopolymers for Fluorescent Turn-On Detection of Nitric Oxide. Inorganic Chemistry, 2006, 45, 9367-9373.	4.0	42
54	Conjugated Polymer-Based Fluorescence Turn-On Sensor for Nitric Oxide. Organic Letters, 2005, 7, 3573-3575.	4.6	106