
Katrine T Schjoldager

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6507450/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global view of human protein glycosylation pathways and functions. Nature Reviews Molecular Cell Biology, 2020, 21, 729-749.	37.0	560
2	An Atlas of Human Glycosylation Pathways Enables Display of the Human Glycome by Gene Engineered Cells. Molecular Cell, 2019, 75, 394-407.e5.	9.7	181
3	Characterizing the O-glycosylation landscape of human plasma, platelets, and endothelial cells. Blood Advances, 2017, 1, 429-442.	5.2	121
4	Loss of Function of GALNT2 Lowers High-Density Lipoproteins in Humans, Nonhuman Primates, and Rodents. Cell Metabolism, 2016, 24, 234-245.	16.2	103
5	A systematic study of modulation of ADAM-mediated ectodomain shedding by site-specific O-glycosylation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14623-14628.	7.1	98
6	Deconstruction of Oâ€glycosylation—Gal <scp>NA</scp> câ€T isoforms direct distinct subsets of theÂOâ€glycoproteome. EMBO Reports, 2015, 16, 1713-1722.	4.5	91
7	SnapShot: O-Glycosylation Pathways across Kingdoms. Cell, 2018, 172, 632-632.e2.	28.9	72
8	A validated gRNA library for CRISPR/Cas9 targeting of the human glycosyltransferase genome. Glycobiology, 2018, 28, 295-305.	2.5	70
9	Glycoproteomics. Nature Reviews Methods Primers, 2022, 2, .	21.2	61
10	Site-specific O-glycosylation of members of the low-density lipoprotein receptor superfamily enhances ligand interactions. Journal of Biological Chemistry, 2018, 293, 7408-7422.	3.4	57
11	A glycogene mutation map for discovery of diseases of glycosylation. Glycobiology, 2015, 25, 211-224.	2.5	52
12	An atlas of O-linked glycosylation on peptide hormones reveals diverse biological roles. Nature Communications, 2020, 11, 4033.	12.8	46
13	Novel congenital disorder of <i>O</i> -linked glycosylation caused by GALNT2 loss of function. Brain, 2020, 143, 1114-1126.	7.6	46
14	Exploring Regulation of Protein O-Glycosylation in Isogenic Human HEK293 Cells by Differential O-Glycoproteomics. Molecular and Cellular Proteomics, 2019, 18, 1396-1409.	3.8	44
15	Glycosyltransferase genes that cause monogenic congenital disorders of glycosylation are distinct from glycosyltransferase genes associated with complex diseases. Glycobiology, 2018, 28, 284-294.	2.5	43
16	Discovery of O-glycans on atrial natriuretic peptide (ANP) that affect both its proteolytic degradation and potency at its cognate receptor. Journal of Biological Chemistry, 2019, 294, 12567-12578.	3.4	42
17	Fine-Tuning Limited Proteolysis: A Major Role for Regulated Site-Specific O-Glycosylation. Trends in Biochemical Sciences, 2018, 43, 269-284.	7.5	40
18	Probing the contribution of individual polypeptide GalNAc-transferase isoforms to the O-glycoproteome by inducible expression in isogenic cell lines. Journal of Biological Chemistry, 2018, 293, 19064-19077.	3.4	38

#	Article	IF	CITATIONS
19	Galnt11 regulates kidney function by glycosylating the endocytosis receptor megalin to modulate ligand binding. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25196-25202.	7.1	38
20	Site-specific O-Glycosylation by Polypeptide N-Acetylgalactosaminyltransferase 2 (GalNAc-transferase) Tj ETQqO 0 4714-4726.	0 rgBT /C 3.4	overlock 10 T 35
21	GlycoDomainViewer: a bioinformatics tool for contextual exploration of glycoproteomes. Glycobiology, 2018, 28, 131-136.	2.5	25
22	TAILS N-terminomics and proteomics reveal complex regulation of proteolytic cleavage by O-glycosylation. Journal of Biological Chemistry, 2018, 293, 7629-7644.	3.4	25
23	Structural Analysis of a GalNAcâ€T2 Mutant Reveals an Inducedâ€Fit Catalytic Mechanism for GalNAcâ€Ts. Chemistry - A European Journal, 2018, 24, 8382-8392.	3.3	16
24	A validated collection of mouse monoclonal antibodies to human glycosyltransferases functioning in mucin-type O-glycosylation. Glycobiology, 2019, 29, 645-656.	2.5	16
25	Development of Isoform-specific Sensors of Polypeptide GalNAc-transferase Activity. Journal of Biological Chemistry, 2014, 289, 30556-30566.	3.4	14
26	Chromogranin A in the mammalian heart: expression without secretion. Biomarkers in Medicine, 2017, 11, 541-545.	1.4	4
27	A Bump-and-Hole Approach to Dissect Regulation of Protein O-Glycosylation. Molecular Cell, 2020, 78, 803-805.	9.7	1
28	NATURAL O-GLYCANS ON ATRIAL NATRIURETIC PEPTIDE ATTENUATE THE ACUTE RENAL AND CARDIOVASCULAR ACTIONS IN VIVO. Journal of the American College of Cardiology, 2019, 73, 693.	2.8	0