Jinn-Kong Sheu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/650603/publications.pdf Version: 2024-02-01

		61984	91884
321	7,091	43	69
papers	citations	h-index	g-index
321	321	321	4631
all docs	docs citations	times ranked	citing authors

INN-KONC SHELL

#	Article	IF	CITATIONS
1	White-light emission from near UV InGaN-GaN LED chip precoated with blue/green/red phosphors. IEEE Photonics Technology Letters, 2003, 15, 18-20.	2.5	607
2	400-nm InGaN-GaN and InGaN-AlGaN multiquantum well light-emitting diodes. IEEE Journal of Selected Topics in Quantum Electronics, 2002, 8, 744-748.	2.9	213
3	Effects of thermal annealing on the indium tin oxide Schottky contacts of n-GaN. Applied Physics Letters, 1998, 72, 3317-3319.	3.3	150
4	Influence of Si-doping on the characteristics of InGaN-GaN multiple quantum-well blue light emitting diodes. IEEE Journal of Quantum Electronics, 2002, 38, 446-450.	1.9	147
5	GaN metal-semiconductor-metal ultraviolet photodetectors with transparent indium-tin-oxide Schottky contacts. IEEE Photonics Technology Letters, 2001, 13, 848-850.	2.5	144
6	Low-operation voltage of InGaN-GaN light-emitting diodes with Si-doped In/sub 0.3/Ga/sub 0.7/N/GaN short-period superlattice tunneling contact layer. IEEE Electron Device Letters, 2001, 22, 460-462.	3.9	125
7	InGaN-AlInGaN multiquantum-well LEDs. IEEE Photonics Technology Letters, 2001, 13, 559-561.	2.5	100
8	GaN metal-semiconductor-metal ultraviolet sensors with various contact electrodes. IEEE Sensors Journal, 2002, 2, 366-371.	4.7	99
9	Nitride-Based LEDs With 800 <tex>\$^circhboxC\$</tex> Grown p-AllnGaN–GaN Double-Cap Layers. IEEE Photonics Technology Letters, 2004, 16, 1447-1449.	2.5	95
10	The doping process and dopant characteristics of GaN. Journal of Physics Condensed Matter, 2002, 14, R657-R702.	1.8	93
11	GaN metal-semiconductor-metal photodetectors with low-temperature-GaN cap layers and ITO metal contacts. IEEE Electron Device Letters, 2003, 24, 212-214.	3.9	93
12	n-UV+Blue/Green/Red White Light Emitting Diode Lamps. Japanese Journal of Applied Physics, 2003, 42, 2284-2287.	1.5	90
13	White-light emission from InGaN-GaN multiquantum-well light-emitting diodes with Si and Zn codoped active well layer. IEEE Photonics Technology Letters, 2002, 14, 450-452.	2.5	86
14	Enhanced efficiency of GaN-based light-emitting diodes with periodic textured Ga-doped ZnO transparent contact layer. Applied Physics Letters, 2007, 90, 263511.	3.3	83
15	Nitride-based cascade near white light-emitting diodes. IEEE Photonics Technology Letters, 2002, 14, 908-910.	2.5	77
16	Nonalloyed Crâ^•Au-based Ohmic contacts to n-GaN. Applied Physics Letters, 2007, 91, .	3.3	74
17	Enhanced light output of GaN-based power LEDs with transparent Al-doped ZnO current spreading layer. IEEE Photonics Technology Letters, 2006, 18, 274-276.	2.5	72
18	Nitride-Based LEDs With an SPS Tunneling Contact Layer and an ITO Transparent Contact. IEEE Photonics Technology Letters, 2004, 16, 1002-1004.	2.5	70

#	Article	IF	CITATIONS
19	Lateral epitaxial patterned sapphire InGaN/GaN MQW LEDs. Journal of Crystal Growth, 2004, 261, 466-470.	1.5	67
20	Nitride-based light emitting diodes with indium tin oxide electrode patterned by imprint lithography. Applied Physics Letters, 2007, 91, 013504.	3.3	67
21	High efficiency and improved ESD characteristics of GaN-based LEDs with naturally textured surface grown by MOCVD. IEEE Photonics Technology Letters, 2006, 18, 1213-1215.	2.5	66
22	Ohmic contacts to p-type GaN mediated by polarization fields in thin InxGa1â^'xN capping layers. Applied Physics Letters, 2002, 80, 986-988.	3.3	65
23	Demonstration of GaN-Based Solar Cells With GaN/InGaN Superlattice Absorption Layers. IEEE Electron Device Letters, 2009, 30, 225-227.	3.9	65
24	Improved ESD protection by combining InGaN-GaN MQW LEDs with GaN Schottky diodes. IEEE Electron Device Letters, 2003, 24, 129-131.	3.9	63
25	Enhanced AlGaN/GaN MOS-HEMT Performance by Using Hydrogen Peroxide Oxidation Technique. IEEE Transactions on Electron Devices, 2013, 60, 213-220.	3.0	62
26	Effect of Thermal Annealing on Ga-Doped ZnO Films Prepared by Magnetron Sputtering. Journal of the Electrochemical Society, 2007, 154, H521.	2.9	61
27	InGaN/GaN light emitting diodes activated in O/sub 2/ ambient. IEEE Electron Device Letters, 2002, 23, 240-242.	3.9	60
28	High-Speed GaN-Based Green Light-Emitting Diodes With Partially n-Doped Active Layers and Current-Confined Apertures. IEEE Electron Device Letters, 2008, 29, 158-160.	3.9	60
29	High-efficiency InGaN-GaN MQW green light-emitting diodes with CART and DBR structures. IEEE Journal of Selected Topics in Quantum Electronics, 2002, 8, 284-288.	2.9	59
30	In0.23Ga0.77N/GaN MQW LEDs with a low temperature GaN cap layer. Solid-State Electronics, 2003, 47, 2027-2030.	1.4	58
31	ICP etching of sapphire substrates. Optical Materials, 2005, 27, 1171-1174.	3.6	58
32	Carrier dynamics in nitride-based light-emitting p-n junction diodes with two active regions emitting at different wavelengths. Journal of Applied Physics, 2003, 94, 2167-2172.	2.5	57
33	Effect of low-temperature-grown GaN cap layer on reduced leakage current of GaN Schottky diodes. Applied Physics Letters, 2005, 86, 052103.	3.3	53
34	Enhanced output power in GaN-based LEDs with naturally textured surface grown by MOCVD. IEEE Electron Device Letters, 2005, 26, 464-466.	3.9	53
35	High brightness green light emitting diodes with charge asymmetric resonance tunneling structure. IEEE Electron Device Letters, 2002, 23, 130-132.	3.9	52
36	n+-GaN formed by Si implantation intop-GaN. Journal of Applied Physics, 2002, 91, 1845-1848.	2.5	52

#	Article	IF	CITATIONS
37	InGaN/GaN tunnel-injection blue light-emitting diodes. IEEE Transactions on Electron Devices, 2002, 49, 1093-1095.	3.0	52
38	Nitride-based near-ultraviolet LEDs with an ITO transparent contact. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 106, 69-72.	3.5	52
39	Enhancement in light output of InGaN-based microhole array light-emitting diodes. IEEE Photonics Technology Letters, 2005, 17, 1163-1165.	2.5	50
40	A curvature-tunable random laser. Nanoscale, 2019, 11, 3534-3545.	5.6	50
41	GaN Schottky barrier photodetectors with a low-temperature GaN cap layer. Applied Physics Letters, 2003, 82, 2913-2915.	3.3	46
42	Schottky barrier heights of metal contacts to n-type gallium nitride with low-temperature-grown cap layer. Applied Physics Letters, 2006, 88, 032103.	3.3	45
43	Probing Hydrophilic Interface of Solid/Liquid-Water by Nanoultrasonics. Scientific Reports, 2014, 4, 6249.	3.3	45
44	Low-operation voltage of InGaN/GaN light-emitting diodes by using a Mg-doped Al/sub 0.15/Ga/sub 0.85/N/GaN superlattice. IEEE Electron Device Letters, 2001, 22, 160-162.	3.9	44
45	Electroluminescence efficiency of blue InGaNâ^•GaN quantum-well diodes with and without an n-InGaN electron reservoir layer. Journal of Applied Physics, 2006, 100, 113105.	2.5	44
46	THz acoustic phonon spectroscopy and nanoscopy by using piezoelectric semiconductor heterostructures. Ultrasonics, 2015, 56, 52-65.	3.9	44
47	InGaN light-emitting diodes with naturally formed truncated micropyramids on top surface. Applied Physics Letters, 2006, 88, 113505.	3.3	43
48	Enhancement in output power of blue gallium nitride-based light-emitting diodes with omnidirectional metal reflector under electrode pads. Applied Physics Letters, 2008, 93, 103507.	3.3	43
49	Planar GaN n+–p photodetectors formed by Si implantation into p-GaN. Applied Physics Letters, 2002, 81, 4263-4265.	3.3	42
50	GaN-Based Miniaturized Cyan Light-Emitting Diodes on a Patterned Sapphire Substrate With Improved Fiber Coupling for Very High-Speed Plastic Optical Fiber Communication. IEEE Photonics Journal, 2012, 4, 1520-1529.	2.0	42
51	Investigation of the mechanism for Ti/Al ohmic contact on etched n-GaN surfaces. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2000, 18, 729.	1.6	39
52	Enhanced output power in an InGaN-GaN multiquantum-well light-emitting diode with an InGaN current-spreading layer. IEEE Photonics Technology Letters, 2001, 13, 1164-1166.	2.5	39
53	High-performance GaN metal–insulator–semiconductor ultraviolet photodetectors using gallium oxide as gate layer. Optics Express, 2011, 19, 12658.	3.4	39
54	Nitride-Based LEDs With Modulation-Doped Al <tex>\$_0.12hbox Ga_0.88 hbox N\$</tex> –GaN Superlattice Structures. IEEE Transactions on Electron Devices, 2004, 51, 1743-1746.	3.0	38

#	Article	IF	CITATIONS
55	Effect of Thickness of the p-AlGaN Electron Blocking Layer on the Improvement of ESD Characteristics in GaN-Based LEDs. IEEE Photonics Technology Letters, 2008, 20, 1142-1144.	2.5	38
56	Improvement of near-ultraviolet InGaN-GaN light-emitting diodes with an AlGaN electron-blocking layer grown at low temperature. IEEE Photonics Technology Letters, 2003, 15, 1342-1344.	2.5	37
57	Characterization of GaN Schottky barrier photodetectors with a low-temperature GaN cap layer. Journal of Applied Physics, 2003, 94, 1753-1757.	2.5	37
58	Reduction of Dark Current in AlGaN–GaN Schottky-Barrier Photodetectors With a Low-Temperature-Grown GaN Cap Layer. IEEE Electron Device Letters, 2004, 25, 593-595.	3.9	37
59	Improved Reliability and ESD Characteristics of Flip-Chip GaN-Based LEDs With Internal Inverse-Parallel Protection Diodes. IEEE Electron Device Letters, 2007, 28, 346-349.	3.9	37
60	Laser-induced periodic structures for light extraction efficiency enhancement of GaN-based light emitting diodes. Optics Express, 2012, 20, 5689.	3.4	36
61	Indium tin oxide ohmic contact to highly doped n-GaN. Solid-State Electronics, 1999, 43, 2081-2084.	1.4	35
62	Emission Mechanism of Mixed-Color InGaN/GaN Multi-Quantum-Well Light-Emitting Diodes. Japanese Journal of Applied Physics, 2006, 45, 2463-2466.	1.5	35
63	Characterization of Si implants in p-type GaN. IEEE Journal of Selected Topics in Quantum Electronics, 2002, 8, 767-772.	2.9	34
64	Improved Performance of GaN-Based Blue LEDs With the InGaN Insertion Layer Between the MQW Active Layer and the n-GaN Cladding Layer. IEEE Journal of Quantum Electronics, 2010, 46, 513-517.	1.9	34
65	Luminescence of an InGaN/GaN multiple quantum well light-emitting diode. Solid-State Electronics, 2000, 44, 1055-1058.	1.4	32
66	The improvement in modulation speed of GaN-based Green light-emitting diode (LED) by use of n-type barrier doping for plastic optical fiber (POF) communication. IEEE Photonics Technology Letters, 2006, 18, 1636-1638.	2.5	32
67	Ga-Doped ZnO Transparent Conductive Oxide Films Applied to GaN-Based Light-Emitting Diodes for Improving Light Extraction Efficiency. IEEE Journal of Quantum Electronics, 2008, 44, 1211-1218.	1.9	32
68	Design of Hole-Blocking and Electron-Blocking Layers in Al _x Ga _{1-x} N-Based UV Light-Emitting Diodes. IEEE Transactions on Electron Devices, 2016, 63, 1141-1147.	3.0	32
69	InGaN-based epitaxial films as photoelectrodes for hydrogen generation through water photoelectrolysis and CO2 reduction to formic acid. Solar Energy Materials and Solar Cells, 2017, 166, 86-90.	6.2	32
70	Si and Zn co-doped InGaN-GaN white light-emitting diodes. IEEE Transactions on Electron Devices, 2003, 50, 519-521.	3.0	31
71	Improving efficiency of InGaN/GaN multiple quantum well solar cells using CdS quantum dots and distributed Bragg reflectors. Solar Energy Materials and Solar Cells, 2013, 117, 531-536.	6.2	31
72	Sea-Urchin-Like Bi ₂ S ₃ Microstructures Decorated with Graphitic Carbon Nitride Nanosheets for Use in Food Preservation. ACS Applied Nano Materials, 2022, 5, 2375-2384.	5.0	31

#	Article	IF	CITATIONS
73	Ultraviolet band-pass Schottky barrier photodetectors formed by Al-doped ZnO contacts to n-GaN. Applied Physics Letters, 2006, 88, 043506.	3.3	30
74	Effect of the Electrode Pattern on Current Spreading and Driving Voltage in a GaNâ^Sapphire LED Chip. Journal of the Electrochemical Society, 2008, 155, H836.	2.9	30
75	III-Nitride Based Cyan Light-Emitting Diodes with GHz Bandwidth for High-Speed Visible Light Communication. IEEE Electron Device Letters, 2016, , 1-1.	3.9	30
76	GaN-based p-i-n sensors with ITO contacts. IEEE Sensors Journal, 2006, 6, 406-411.	4.7	29
77	High brightness ingan green leds with an ito on n/sup ++/ -sps upper contact. IEEE Transactions on Electron Devices, 2003, 50, 2208-2212.	3.0	28
78	Inverted Al0.25Ga0.75N/GaN ultraviolet p-i-n photodiodes formed on p-GaN template layer grown by metalorganic vapor phase epitaxy. Applied Physics Letters, 2010, 97, 013502.	3.3	27
79	GaN-based light emitting diodes with embedded SiO2 pillars and air gap array structures. Applied Physics Letters, 2010, 97, .	3.3	27
80	Enhancement of the conversion efficiency of GaN-based photovoltaic devices with AlGaN/InGaN absorption layers. Applied Physics Letters, 2010, 97, 021113.	3.3	27
81	Slanted n-ZnO/p-GaN nanorod arrays light-emitting diodes grown by oblique-angle deposition. APL Materials, 2014, 2, 056101.	5.1	27
82	Enhancing UV-emissions through optical and electronic dual-function tuning of Ag nanoparticles hybridized with n-ZnO nanorods/p-GaN heterojunction light-emitting diodes. Nanoscale, 2016, 8, 4463-4474.	5.6	27
83	Ultraviolet bandpass Al0.17Ga0.83Nâ^•GaN heterojunction phototransitors with high optical gain and high rejection ratio. Applied Physics Letters, 2008, 92, .	3.3	26
84	Effects of Thermal Annealing on Al-Doped ZnO Films Deposited on p-Type Gallium Nitride. Journal of the Electrochemical Society, 2006, 153, G296.	2.9	25
85	Photodetectors formed by an indium tin oxide/zinc oxide/p-type gallium nitride heterojunction with high ultraviolet-to-visible rejection ratio. Applied Physics Letters, 2009, 94, 013512.	3.3	25
86	Low Operation Voltage of Nitride-Based LEDs with Al-Doped ZnO Transparent Contact Layer. Electrochemical and Solid-State Letters, 2008, 11, H269.	2.2	24
87	A Numerical Study of Thermal and Electrical Effects in a Vertical LED Chip. Journal of the Electrochemical Society, 2010, 157, H31.	2.9	24
88	Rationally designed RGO@CuO@Mn ₂ O ₃ as an excellent electrocatalyst for the rapid and real-time detection of 2-nitrophenol. New Journal of Chemistry, 2020, 44, 12465-12472.	2.8	24
89	Nitride-based green light-emitting diodes with high temperature GaN barrier layers. IEEE Transactions on Electron Devices, 2003, 50, 1766-1770.	3.0	23
90	Ga ₂ O ₃ Films for Photoelectrochemical Hydrogen Generation. Journal of the Electrochemical Society, 2014, 161, H508-H511.	2.9	23

#	Article	IF	CITATIONS
91	White emission from non-planar InGaN/GaN MQW LEDs grown on GaN template with truncated hexagonal pyramids. Optics Express, 2015, 23, A401.	3.4	23
92	Observation of dislocation etch pits in epitaxial lateral overgrowth GaN by wet etching. Solid-State Electronics, 2002, 46, 555-558.	1.4	22
93	Femtosecond ultrasonic spectroscopy using a piezoelectric nanolayer: Hypersound attenuation in vitreous silica films. Applied Physics Letters, 2011, 99, 051913.	3.3	22
94	Nitride-based blue LEDs with GaN/SiN double buffer layers. Solid-State Electronics, 2003, 47, 2019-2022.	1.4	21
95	InGaN gallium nitride light-emitting diodes with reflective electrode pads and textured gallium-doped ZnO contact layer. Applied Physics Letters, 2010, 96, 133504.	3.3	21
96	Light-emitting diodes with surface gallium nitride p–n homojunction structure formed by selective area regrowth. Scientific Reports, 2019, 9, 3243.	3.3	21
97	GaN p–n junction diode formed by Si ion implantation into p-GaN. Solid-State Electronics, 2002, 46, 2179-2183.	1.4	20
98	Deep level defect in Si-implanted GaN n+-p junction. Applied Physics Letters, 2003, 82, 3671-3673.	3.3	20
99	Experimental study of perpendicular transport in weakly coupled AlxGa1â^'xN/GaN superlattices. Applied Physics Letters, 2003, 83, 4975-4977.	3.3	20
100	Comparison of low-temperature GaN, SiO2, and SiNx as gate insulators on AlGaNâ^•GaN heterostructure field-effect transistors. Journal of Applied Physics, 2005, 98, 064506.	2.5	20
101	Electrical-optical analysis of a GaN/sapphire LED chip by considering the resistivity of the current-spreading layer. Optical Review, 2009, 16, 213-215.	2.0	20
102	Vertical InGaN-based green-band solar cells operating under high solar concentration up to 300 suns. Optics Express, 2014, 22, A1222.	3.4	20
103	Ultraviolet/blue light-emitting diodes based on single horizontal ZnO microrod/GaN heterojunction. Nanoscale Research Letters, 2014, 9, 446.	5.7	20
104	Mn valence state mediated room temperature ferromagnetism in nonpolar Mn doped GaN. Applied Surface Science, 2019, 473, 693-698.	6.1	20
105	Visible–blind GaN p–i–n photodiodes with an Al0.12Ga0.88N/GaN superlattice structure. Solid-State Electronics, 2003, 47, 873-878.	1.4	19
106	Phosphor-Free GaN-Based Transverse Junction Light Emitting Diodes for the Generation of White Light. IEEE Photonics Technology Letters, 2006, 18, 2593-2595.	2.5	19
107	AlGaN ultraviolet metal-semiconductor-metal photodetectors grown on Si substrates. Sensors and Actuators A: Physical, 2007, 135, 502-506.	4.1	19
108	GaN-Based LEDs With AZO:Y Upper Contact. IEEE Transactions on Electron Devices, 2010, 57, 134-139.	3.0	19

#	Article	IF	CITATIONS
109	Improved conversion efficiency of GaN-based solar cells with Mn-doped absorption layer. Applied Physics Letters, 2013, 103, 063906.	3.3	19
110	Passively gain-switched and self mode-locked thulium fiber laser at 1950nm. Optics and Laser Technology, 2014, 56, 354-357.	4.6	19
111	Polymer PBT/n-GaN metal–insulator–semiconductor structure. Applied Physics Letters, 2001, 79, 4589-4591.	3.3	18
112	High-Responsivity Solar-Blind Photodetectors Formed by Ga ₂ O ₃ /p-GaN Bipolar Heterojunctions. ACS Photonics, 2022, 9, 1002-1007.	6.6	18
113	Temperature-dependent study of n-ZnOâ^•p-GaN diodes. Applied Physics Letters, 2007, 90, 132111.	3.3	17
114	Ultraviolet band-pass photodetectors formed by Ga-doped ZnO contacts to n-GaN. Applied Physics Letters, 2008, 92, 113512.	3.3	17
115	Characteristics of InGaN-based concentrator solar cells operating under 150X solar concentration. Optics Express, 2011, 19, A695.	3.4	17
116	Thermal Boundary Resistance between GaN and Cubic Ice and THz Acoustic Attenuation Spectrum of Cubic Ice from Complex Acoustic Impedance Measurements. Physical Review Letters, 2013, 111, 225901.	7.8	17
117	AlGaN-based deep ultraviolet light emitting diodes with magnesium delta-doped AlGaN last barrier. Applied Physics Letters, 2020, 117, .	3.3	17
118	Low-resistance Ni/Au ohmic contact to Mg-doped of Al0.15Ga0.85N/GaN superlattices. Solid-State Electronics, 2001, 45, 717-720.	1.4	16
119	Effect of Cl2â^•Ar dry etching on p-GaN with Niâ^•Au metallization characterization. Applied Physics Letters, 2005, 87, 252107.	3.3	16
120	Improved Output Power of GaN-based Blue LEDs by Forming Air Voids on Ar-Implanted Sapphire Substrate. Journal of Lightwave Technology, 2013, 31, 1318-1322.	4.6	16
121	Warm-white light-emitting diode with high color rendering index fabricated by combining trichromatic InGaN emitter with single red phosphor. Optics Express, 2015, 23, A232.	3.4	16
122	Manganese-doped AlGaN/GaN heterojunction solar cells with intermediate band absorption. Solar Energy Materials and Solar Cells, 2016, 157, 727-732.	6.2	16
123	Linear Cascade Arrays of GaN-Based Green Light-Emitting Diodes for High-Speed and High-Power Performance. IEEE Photonics Technology Letters, 2007, 19, 1368-1370.	2.5	15
124	Improvement of InGaN/GaN laser diodes by using a Si-doped In/sub 0.23/Ga/sub 0.77/N/GaN short-period superlattice tunneling contact layer. IEEE Electron Device Letters, 2003, 24, 206-208.	3.9	14
125	Si diffusion in p-GaN. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2004, 22, 1727.	1.6	14
126	Investigation of the Carrier Dynamic in GaN-Based Cascade Green Light-Emitting Diodes Using the Very Fast Electrical–Optical Pump–Probe Technique. IEEE Transactions on Electron Devices, 2011, 58, 495-500.	3.0	14

#	Article	IF	CITATIONS
127	Mn-doped GaN as photoelectrodes for the photoelectrolysis of water under visible light. Optics Express, 2012, 20, A678.	3.4	14
128	GaN-Based Planar p-i-n Photodetectors With the Be-Implanted Isolation Ring. IEEE Transactions on Electron Devices, 2013, 60, 1178-1182.	3.0	14
129	High-power and single-mode VCSEL arrays with single-polarized outputs by using package-induced tensile strain. Optics Letters, 2020, 45, 4839.	3.3	14
130	Highly Reliable Nitride-Based LEDs With Internal ESD Protection Diodes. IEEE Transactions on Device and Materials Reliability, 2006, 6, 442-447.	2.0	13
131	Improved performance of planar GaN-based p-i-n photodetectors with Mg-implanted isolation ring. Applied Physics Letters, 2006, 89, 183509.	3.3	13
132	AlGaN/GaN Schottky-barrier UV-B bandpass photodetectors with ITO contacts and LT-GaN cap layers. Semiconductor Science and Technology, 2006, 21, 1064-1068.	2.0	13
133	Phosphor-Free GaN-Based Transverse Junction White-Light Light-Emitting Diodes With Regrown n-Type Regions. IEEE Photonics Technology Letters, 2008, 20, 449-451.	2.5	13
134	GaN-Based LEDs Output Power Improved by Textured GaN/Sapphire Interface Using <emphasis emphasistype="italic">In Situ <formula formulatype="inline"><tex Notation="TeX">\$hbox{SiH}_{f 4}\$ </tex </formula> Treatment Process During Epitaxial Growth. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15, 1275-1280.</emphasis 	2.9	13
135	Hydrogen gas generation using n-GaN photoelectrodes with immersed Indium Tin Oxide ohmic contacts. Optics Express, 2011, 19, A1196.	3.4	13
136	Femtosecond excitation of radial breathing mode in 2-D arrayed GaN nanorods. Optics Express, 2012, 20, 16611.	3.4	13
137	GaN-based light emitting diodes with micro- and nano-patterned structures by femtosecond laser nonlinear decomposition. Applied Physics Letters, 2012, 101, 131103.	3.3	13
138	Characterization of p-type InxGa1â^'xN grown by metalorganic chemical vapor deposition. Solid-State Electronics, 2001, 45, 427-430.	1.4	12
139	Linear Cascade GaN-Based Green Light-Emitting Diodes With Invariant High-Speed/Power Performance Under High-Temperature Operation. IEEE Photonics Technology Letters, 2008, 20, 1896-1898.	2.5	12
140	High-Brightness InGaN–GaN Power Flip-Chip LEDs. Journal of Lightwave Technology, 2009, 27, 1985-1989.	4.6	12
141	Femtosecond laser-ultrasonic investigation of plasmonic fields on the metal/gallium nitride interface. Applied Physics Letters, 2010, 97, .	3.3	12
142	Effect of Growth Pressure of Undoped GaN Layer on the ESD Characteristics of GaN-Based LEDs Grown on Patterned Sapphire. IEEE Photonics Technology Letters, 2011, 23, 968-970.	2.5	12
143	Influence of modulated fields on the Landau level properties of graphene. Physical Review B, 2011, 83, .	3.2	12
144	Gallium nitride-based light-emitting diodes with embedded air voids grown on Ar-implanted AlN/sapphire substrate. Applied Physics Letters, 2012, 101, .	3.3	12

#	Article	IF	CITATIONS
145	InGaN working electrodes with assisted bias generated from GaAs solar cells for efficient water splitting. Optics Express, 2013, 21, A991.	3.4	12
146	In Situ Monitoring of Chemical Reactions at a Solid–Water Interface by Femtosecond Acoustics. Journal of Physical Chemistry Letters, 2017, 8, 5430-5437.	4.6	12
147	AlGaInP/GaP Light-Emitting Diodes Fabricated by Wafer Direct Bonding Technology. Japanese Journal of Applied Physics, 1996, 35, 4199-4202.	1.5	11
148	GaN diffractive microlenses fabricated with gray-level mask. Optics Communications, 2003, 215, 75-78.	2.1	11
149	GaInN light-emitting diodes with omnidirectional reflectors. , 2003, 4996, 139.		11
150	Improved Light Extraction Efficiency in AlGaInP Light-Emitting Diodes by Applying a Periodic Texture on the Surface. IEEE Photonics Technology Letters, 2008, 20, 1724-1726.	2.5	11
151	The Structure of GaN-Based Transverse Junction Blue LED Array for Uniform Distribution of Injected Current/Carriers. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15, 1292-1297.	2.9	11
152	Improved Hydrogen Gas Generation Rate of n-GaN Photoelectrode with SiO[sub 2] Protection Layer on the Contacts from the Electrolyte. Journal of the Electrochemical Society, 2010, 157, B266.	2.9	11
153	Vertical InGaN light-emitting diodes with a sapphire-face-up structure. Optics Express, 2012, 20, A119.	3.4	11
154	GaN-Based Cyan Light-Emitting Diode with up to 1-GHz Bandwidth for High-Speed Transmission Over SI-POF. IEEE Photonics Journal, 2017, 9, 1-7.	2.0	11
155	Planar GaN-Based Blue Light-Emitting Diodes With Surface p-n Junction Formed by Selective-Area Si–Ion Implantation. IEEE Transactions on Electron Devices, 2017, 64, 4156-4160.	3.0	11
156	GaN intermediate band solar cells with Mn-doped absorption layer. Scientific Reports, 2018, 8, 8641.	3.3	11
157	Piezoelectric effect on Al0.35â~î1nî´Ga0.65N/GaN heterostructures. Applied Physics Letters, 2002, 80, 2684-2686.	3.3	10
158	AlGaN-GaN Schottky-barrier photodetectors with LT GaN cap layers. Journal of Crystal Growth, 2005, 283, 68-71.	1.5	10
159	GaN-Based Light-Emitting Diodes With Pillar Structures Around the Mesa Region. IEEE Journal of Quantum Electronics, 2010, 46, 1066-1071.	1.9	10
160	Effect of Thermal Annealing on the GaN Metal-Oxide-Semiconductor Capacitors with Gallium Oxide Gate Layer. Journal of the Electrochemical Society, 2010, 157, H1019.	2.9	10
161	Very-High Temperature (200 \$^{circ}\$C) and High-Speed Operation of Cascade GaN-Based Green Light- Emitting Diodes With an InGaN Insertion Layer. IEEE Photonics Technology Letters, 2010, 22, 1033-1035.	2.5	10
162	Enhanced Light Output of GaN-Based Light-Emitting Diodes With Embedded Voids Formed on Si-Implanted GaN Layers. IEEE Electron Device Letters, 2011, 32, 1400-1402.	3.9	10

#	Article	IF	CITATIONS
163	Immersed finger-type indium tin oxide ohmic contacts on p-GaN photoelectrodes for photoelectrochemical hydrogen generation. Optics Express, 2012, 20, A190.	3.4	10
164	Numerical study of the suppressed efficiency droop in blue InGaN LEDs with polarization-matched configuration. Optics Letters, 2013, 38, 3158.	3.3	10
165	Photoelectrochemical Generation of Hydrogen and Formic Acid Using GaN Films Decorated with TiO ₂ /Ag Nanoparticles Composite Structure as Photoelectrodes. Journal of Physical Chemistry C, 2020, 124, 9591-9598.	3.1	10
166	Stable Photoelectrochemical Water Splitting Using p–n GaN Junction Decorated with Nickel Oxides as Photoanodes. Journal of Physical Chemistry C, 2021, 125, 16776-16783.	3.1	10
167	Hydrothermal-Dependent Synthesis of Exfoliated Nickel Cobaltite Layers for Simultaneous Determination of IARC Group 2B, 3B Carcinogens. ACS Applied Nano Materials, 2021, 4, 12788-12797.	5.0	10
168	Electrical derivative characteristics of ion-implanted AlGaInP/GaInP multi-quantum well lasers. Solid-State Electronics, 1998, 42, 1867-1869.	1.4	9
169	Effect of GaN cap layer grown at a low temperature on electrical characteristics of Al0.25Ga0.75Nâ^•GaN heterojunction field-effect transistors. Applied Physics Letters, 2004, 85, 1430-1432.	3.3	9
170	Crack-Free High-Brightness InGaNâ^•GaN LEDs on Si(111) with Initial AlGaN Buffer and Two LT-Al Interlayers. Journal of the Electrochemical Society, 2007, 154, H191.	2.9	9
171	Linear photon up-conversion of 450 meV in InGaN/GaN multiple quantum wells via Mn-doped GaN intermediate band photodetection. Optics Express, 2011, 19, A1211.	3.4	9
172	Electroluminescence of ZnO nanocrystal in sputtered ZnO-SiO_2 nanocomposite light-emitting devices. Optics Express, 2011, 19, 11873.	3.4	9
173	Efficient collection of photogenerated carriers by inserting double tunnel junctions in III-nitride p-i-n solar cells. Applied Physics Letters, 2013, 103, 193503.	3.3	9
174	Photoresponses of manganese-doped gallium nitride grown by metalorganic vapor-phase epitaxy. Applied Physics Letters, 2013, 102, .	3.3	9
175	Verification of complex acoustic mismatch model in sub-THz regime. Applied Physics Letters, 2019, 114, .	3.3	9
176	Terahertz Photoacoustic Generation Using Ultrathin Nickel Nanofilms. Journal of Physical Chemistry C, 2021, 125, 3134-3142.	3.1	9
177	Nitride-based light emitting diodes with Si-doped In/sub 0.23/Ga/sub 0.77/N/GaN short period superlattice tunneling contact layer. IEEE Transactions on Electron Devices, 2003, 50, 535-537.	3.0	8
178	Planar GaN p-i-n photodiodes with n+-conductive channel formed by Si implantation. Applied Physics Letters, 2006, 88, 203508.	3.3	8
179	Largely variable electroluminescence efficiency with current and temperature in a blue (In, Ga)N multiple-quantum-well diode. Applied Physics Letters, 2007, 91, .	3.3	8
180	Investigation of the Efficiency-Droop Mechanism in Vertical Red Light-Emitting Diodes Using a Dynamic Measurement Technique. IEEE Photonics Technology Letters, 2011, 23, 1585-1587.	2.5	8

Jinn-Kong Sheu

#	Article	IF	CITATIONS
181	Light Extraction Enhancement of GaN-Based Light-Emitting Diodes Using Crown-Shaped Patterned Sapphire Substrates. IEEE Photonics Technology Letters, 2012, 24, 1212-1214.	2.5	8
182	Non-alloyed Cr/Au Ohmic contacts to N-face and Ga-face n-GaN. Journal of Alloys and Compounds, 2012, 516, 38-40.	5.5	8
183	Dual-wavelength GaN-based LEDs grown on truncated hexagonal pyramids formed by selective-area regrowth on Si-implanted GaN templates. Optics Express, 2013, 21, A864.	3.4	8
184	InGaN Flip-Chip Light-Emitting Diodes With Embedded Air Voids as Light-Scattering Layer. IEEE Electron Device Letters, 2013, 34, 1542-1544.	3.9	8
185	Temperature-Dependent Current-Voltage Characteristics of Al-Doped Mg _x Zn _{1-x} O/AlGaN <i>np</i> Junction Diodes. ECS Journal of Solid State Science and Technology, 2014, 3, Q65-Q68.	1.8	8
186	Carrier dynamics of Mn-induced states in GaN thin films. Scientific Reports, 2017, 7, 5788.	3.3	8
187	Enhanced production rates of hydrogen generation and carbon dioxide reduction using aluminum gallium nitride/gallium nitride heteroepitaxial films as photoelectrodes in seawater. Solar Energy Materials and Solar Cells, 2019, 202, 110153.	6.2	8
188	Graphene Quantum Dot Vertical Cavity Surface-Emitting Lasers. ACS Photonics, 2019, 6, 2894-2901.	6.6	8
189	Crystal orientation dependence of optical gain in InGaN/GaN multiple-quantum-well structures. Applied Physics Letters, 2001, 79, 1477-1479.	3.3	7
190	Novel type of ohmic contacts to p-doped GaN using polarization fields in thin InxGa1â^'xN capping layers. Journal of Electronic Materials, 2002, 31, 416-420.	2.2	7
191	Improvement of near-ultraviolet InGaN-GaN light-emitting diodes through higher pressure grown underlying GaN layers. IEEE Photonics Technology Letters, 2003, 15, 1050-1052.	2.5	7
192	Nitride-based photodiode at 510-nm wavelength for plastic optical fiber communication. IEEE Photonics Technology Letters, 2006, 18, 283-285.	2.5	7
193	The CL emission observation of the InGaN/GaN MQWs V shaped pits with different superlattices underlayers. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 1639-1641.	0.8	7
194	AlGaInP/GaP Heterostructures Bonded with Si Substrate to Serve as Solar Cells and Light Emitting Diodes. Journal of the Electrochemical Society, 2010, 157, H452.	2.9	7
195	Enhanced output power of GaN-based LEDs with embedded AlGaN pyramidal shells. Optics Express, 2011, 19, 12719.	3.4	7
196	Vertical InGaN light-emitting diode with a retained patterned sapphire layer. Optics Express, 2012, 20, A1019.	3.4	7
197	Acoustic spectroscopy for studies of vitreous silica up to 740 GHz. AIP Advances, 2013, 3, 072126.	1.3	7
198	Surface Plasmon-Enhanced GaN Metal–Insulator–Semiconductor Ultraviolet Detectors With Ag Nanoislands Embedded in a Silicon Dioxide Gate Layer. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 137-141.	2.9	7

#	Article	IF	CITATIONS
199	THz Acoustic Spectroscopy by using Double Quantum Wells and Ultrafast Optical Spectroscopy. Scientific Reports, 2016, 6, 28577.	3.3	7
200	Photoelectrochemical hydrogen generation from water using undoped GaN with selective-area Si-implanted stripes as a photoelectrode. Journal of Materials Chemistry A, 2017, 5, 22625-22630.	10.3	7
201	Scalable and sustainable synthetic assessment between solid-state metathesis and sonochemically derived electrocatalysts (strontium molybdate) for the precise anti-androgen bicalutamide (Casodexâ,,¢) detection. Microchemical Journal, 2021, 168, 106465.	4.5	7
202	Photoluminescence from In0.3Ga0.7N/GaN multiple-quantum-well nanorods. Nanotechnology, 2005, 16, 448-450.	2.6	6
203	Flip-Chip p(GaN)-i(GaN)-n(AlGaN) Narrowband UV-A Photosensors. IEEE Sensors Journal, 2006, 6, 964-969.	4.7	6
204	Variations of Channel Conductance in AlGaN/GaN Structure with Sub-Bandgap Laser Light and Above-Bandgap Illuminations. Japanese Journal of Applied Physics, 2007, 46, 3382-3384.	1.5	6
205	The Output Power Enhancements of GaN-Based Blue Light-Emitting Diodes with Highly Reflective Ag/Cr/Au Trilayer Omnidirectional Reflective Electrode Pads. Japanese Journal of Applied Physics, 2009, 48, 102103.	1.5	6
206	GaN-Based LED with Embedded Microlens-like Structure. Journal of the Electrochemical Society, 2009, 156, H976.	2.9	6
207	GaN-Based Power Flip-Chip LEDs With Cu Submount. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15, 1287-1291.	2.9	6
208	Improvement of the Efficiency of InGaN–GaN Quantum-Well Light-Emitting Diodes Grown With a Pulsed-Trimethylindium Flow Process. IEEE Photonics Technology Letters, 2009, 21, 414-416.	2.5	6
209	AlGaN-based ultraviolet photodetector with micropillar structures. Applied Physics Letters, 2010, 96, 102104.	3.3	6
210	InGaN light-emitting diodes with oblique sidewall facets formed by selective growth on SiO_2 patterned GaN film. Optics Express, 2010, 18, A562.	3.4	6
211	Improved Output Power of InGaN LEDs by Lateral Overgrowth on Si-Implanted n-GaN Surface to Form Air Gaps. IEEE Journal of Quantum Electronics, 2012, 48, 1004-1009.	1.9	6
212	GaN-Based Dual-Color LEDs With \$p\$-Type Insertion Layer for Controlling the Ratio of Two-Color Intensities. IEEE Transactions on Electron Devices, 2013, 60, 2821-2826.	3.0	6
213	Theoretical Investigation of Efficient Green Tunnel-Junction Light-Emitting Diodes. IEEE Electron Device Letters, 2017, 38, 75-78.	3.9	6
214	Extracting elastic properties of an atomically thin interfacial layer by time-domain analysis of femtosecond acoustics. Applied Physics Letters, 2017, 111, 213101.	3.3	6
215	Monolithic stacked blue light-emitting diodes with polarization-enhanced tunnel junctions. Optics Express, 2017, 25, A777.	3.4	6
216	NiOx nanoparticles as active water splitting catalysts for the improved photostability of a n-GaN photoanode. Solar Energy Materials and Solar Cells, 2020, 216, 110723.	6.2	6

#	Article	IF	CITATIONS
217	High brightness InGaN/GaN LEDs with indium-tin-oxide as p-electrode. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 2227-2231.	0.8	5
218	Aluminum gallium nitride ultraviolet photodiodes with buried p-layer structure. Applied Physics Letters, 2005, 87, 043501.	3.3	5
219	GaN-Based Ultraviolet p-i-n Photodiodes with Buried p-Layer Structure Grown by MOVPE. Journal of the Electrochemical Society, 2007, 154, H182.	2.9	5
220	Effects of leakage current and Schottky-like ohmic contact on the characterization of Al0.17Ga0.83N/GaN HBTs. Solid-State Electronics, 2007, 51, 1073-1078.	1.4	5
221	Light Output Improvement of Oxide-Textured InGaN-Based Light-Emitting Diodes by Bias-Assisted Photoelectrochemical Oxidation With Imprint Technique. IEEE Photonics Technology Letters, 2009, 21, 718-720.	2.5	5
222	Characterization of n-GaN with Naturally Textured Surface for Photoelectrochemical Hydrogen Generation. Journal of the Electrochemical Society, 2010, 157, H1106.	2.9	5
223	High-temperature stability of postgrowth-annealed Al-doped MgxZn1-xO films without the phase separation effect. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2012, 30, .	1.2	5
224	Sputtered ZnO–SiO_2 nanocomposite light-emitting diodes with flat-top nanosecond laser treatment. Optics Express, 2012, 20, 19635.	3.4	5
225	Optical properties of Mn in regrown GaN-based epitaxial layers. Optical Materials Express, 2012, 2, 469.	3.0	5
226	GaN-based photon-recycling green light-emitting diodes with vertical-conduction structure. Optics Express, 2015, 23, A371.	3.4	5
227	Vertical GaN-Based LEDs With Naturally Textured Surface Formed by Patterned Sapphire Substrate With Self-Assembled Ag Nanodots as Etching Mask. IEEE Transactions on Electron Devices, 2015, 62, 2919-2923.	3.0	5
228	Mask-free regrowth of GaN p-i-n structure on selective-area Si-implanted n-GaN template layer. Acta Materialia, 2016, 108, 17-25.	7.9	5
229	Design of GaN-Based Multicolor Tunnel-Junction Light-Emitting Diodes. IEEE Transactions on Electron Devices, 2018, 65, 165-171.	3.0	5
230	Studying time-dependent contribution of hot-electron versus lattice-induced thermal-expansion response in ultra-thin Au-nanofilms. Applied Physics Letters, 2020, 117, .	3.3	5
231	MOCVD growth of InGaN/GaN blue light emitting diodes on patterned sapphire substrates. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 2253-2256.	0.8	4
232	Gratings in GaN Membranes. Japanese Journal of Applied Physics, 2004, 43, 5854-5856.	1.5	4
233	III-Nitride-Based Light-Emitting Diodes With GaN Micropillars Around Mesa and Patterned Substrate. IEEE Transactions on Electron Devices, 2010, 57, 140-144.	3.0	4
234	Sub-Bandgap Laser Light-Induced Excess Carrier Transport Between Surface States and Two-Dimensional Electron Gas Channel in AlGaN/GaN Structure. IEEE Journal of Quantum Electronics, 2010, 46, 112-115.	1.9	4

#	Article	IF	CITATIONS
235	The Influence of a Piezoelectric Field on the Dynamic Performance of GaN-Based Green Light-Emitting Diodes With an InGaN Insertion Layer. IEEE Electron Device Letters, 2011, 32, 656-658.	3.9	4
236	Improved Power Conversion Efficiency of InGaN Photovoltaic Devices Grown on Patterned Sapphire Substrates. IEEE Electron Device Letters, 2011, 32, 536-538.	3.9	4
237	Photoelectrochemical hydrogen generation with linear gradient Al composition dodecagon faceted AlGaN/n-GaN electrode. Optics Express, 2014, 22, A1853.	3.4	4
238	GaN based Cyan light-emitting diodes with GHz bandwidth. , 2016, , .		4
239	Observation of Femtosecond Acoustic Anomaly in a Solid Liquid Interface. Journal of Physical Chemistry C, 2020, 124, 2987-2993.	3.1	4
240	Effects of Thermal Annealing on the Properties of Zirconium-Doped MgxZn1â^'XO Films Obtained through Radio-Frequency Magnetron Sputtering. Membranes, 2021, 11, 373.	3.0	4
241	UV light-emitting diodes grown on GaN templates with selective-area Si implantation. Optics Express, 2020, 28, 4674.	3.4	4
242	AlGaN-Based Deep Ultraviolet Light-Emitting Diodes with Thermally Oxidized Al _{<i>x</i>} Ga _{2–<i>x</i>} O ₃ Sidewalls. ACS Omega, 2022, 7, 15027-15036.	3.5	4
243	Characterization of the properties of Mg-doped Al0.15Ga0.85N/GaN superlattices. Solid-State Electronics, 2001, 45, 1665-1671.	1.4	3
244	Gallium Nitride Diffractive Microlenses Using in Ultraviolet Micro-Optics System. Optical Review, 2003, 10, 287-289.	2.0	3
245	400nm InGaN/GaN and InGaN/AlGaN multiquantum well light-emitting diodes. , 0, , .		3
246	Fabrication and Characterization of In0.25Ga0.75N/GaN Multiple Quantum Wells Embedded in Nanorods. Japanese Journal of Applied Physics, 2005, 44, 7723-7725.	1.5	3
247	Effects of Thermal Annealing on Si-Implanted GaN Films Grown at Low Temperature by Metallorganic Vapor Phase. Journal of the Electrochemical Society, 2005, 152, G813.	2.9	3
248	Planar Ultraviolet Photodetectors Formed by Si Implantation into p-GaN. Journal of the Electrochemical Society, 2006, 153, G799.	2.9	3
249	Nitride-Based Flip-Chip p-i-n Photodiodes. IEEE Transactions on Advanced Packaging, 2006, 29, 483-487.	1.6	3
250	Focused Ion Beam Milled InGaN/GaN Multiple Quantum Well Nanopillars. Japanese Journal of Applied Physics, 2008, 47, 3130-3133.	1.5	3
251	GaN-Based Light-Emitting Diodes With Air Gap Array and Patterned Sapphire Substrate. IEEE Photonics Technology Letters, 2011, 23, 1207-1209.	2.5	3
252	Vertical InGaN light-emitting diodes with Ag paste as bonding layer. Microelectronics Reliability, 2012, 52, 949-951.	1.7	3

#	Article	IF	CITATIONS
253	Determination ofs-dexchange coupling in GaMnN by time-resolved Kerr rotation spectroscopy. Physical Review B, 2014, 90, .	3.2	3
254	Selective Growth of AlGaN-Based p-i-n UV Photodiodes Structures. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 173-177.	2.9	3
255	Suppressing the Initial Growth of Sidewall GaN by Modifying Micron-Sized Patterned Sapphire Substrate with H3PO4-Based Etchant. Micromachines, 2018, 9, 622.	2.9	3
256	Al0.3Ga0.7N/GaN heterostructure transistors with a regrown p-GaN gate formed with selective-area Si implantation as the regrowth mask. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 124, 114367.	2.7	3
257	Deep Ultraviolet AlGaN-Based Light-Emitting Diodes with p-AlGaN/AlGaN Superlattice Hole Injection Structures. Processes, 2021, 9, 1727.	2.8	3
258	Very High-Speed GaN-Based Cyan Light Emitting Diode on Patterned Sapphire Substrate for 1 Gbps Plastic Optical Fiber Communication. , 2012, , .		3
259	Dependence of optical gain on direction of optically pumped cavity on (0001)-plane for InGaN/GaN multiple quantum well structure. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2002, 93, 28-30.	3.5	2
260	Rectifying characteristics of WSi0.8–GaN Schottky barrier diodes with a GaN cap layer grown at low temperature. Journal of Applied Physics, 2005, 98, 036106.	2.5	2
261	Low Schottky barrier to etched pâ€GaN using regrown AlInGaN and InGaN contact layer. Journal of Applied Physics, 2006, 99, 026106.	2.5	2
262	Hole escape processes detrimental to photoluminescence efficiency in a blue InGaN multiple-quantum-well diode under reverse bias conditions. Applied Physics Letters, 2007, 90, 161109.	3.3	2
263	Nonâ€lithographic nanopatterning of InGaN/GaN multiple quantum well nanopillars by focused ion beams. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 2186-2188.	0.8	2
264	Characterization of Gallium-Doped Zinc Oxide Contact on n-Type Gallium Nitride Epitaxial Layers. Journal of the Electrochemical Society, 2009, 156, H679.	2.9	2
265	GaN-Based LEDs With Mesh ITO p-Contact and Nanopillars. IEEE Photonics Technology Letters, 2009, 21, 1293-1295.	2.5	2
266	Polarized edge emission from GaN-based light-emitting diodes sandwiched by dielectric/metal hybrid reflectors. Journal of Applied Physics, 2010, 108, 113102.	2.5	2
267	Optical and Electrical Properties of µ-Slice InGaN/GaN Light Emitting Diodes Shaped by Focused Ion Beam Process. Applied Physics Express, 2011, 4, 032104.	2.4	2
268	Modulation Effects of Periodic Potentials on the Electronic Properties of Bilayer Bernal Graphene: Tight-Binding Model. Journal of the Physical Society of Japan, 2012, 81, 014705.	1.6	2
269	Carrier Dynamics in High-Efficiency Blue GaN Light-Emitting Diodes Under Different Bias Currents and Temperatures. IEEE Photonics Journal, 2012, 4, 1870-1880.	2.0	2
270	Confined acoustic vibrations in piezoelectric GaN nanorods. , 2012, , .		2

#	Article	IF	CITATIONS
271	Positioning effect of type-II GaSb/GaAs quantum ring layer on solar cell performances. , 2015, , .		2
272	Physical properties of Al-doped MgZnO/AlGaN p–n heterojunction photodetectors. Optical and Quantum Electronics, 2016, 48, 1.	3.3	2
273	GaN-Based UV Light-Emitting Diodes With a Green Indicator Through Selective-Area Photon Recycling. IEEE Transactions on Electron Devices, 2016, 63, 1122-1127.	3.0	2
274	Investigation on Modulation Speed of Photon-Recycling White Light-Emitting Diodes With Vertical-Conduction Structure. Journal of Lightwave Technology, 2019, 37, 1225-1230.	4.6	2
275	Cobalt Oxide Nanofilms on n-GaN Working Electrodes for Photoelectrochemical Water Splitting. Journal of Physical Chemistry C, 2020, 124, 25196-25201.	3.1	2
276	Improved Performance of GaN Photoelectrodes from the Facile Fabrication of a Binder-Free Catalyst: Ni(OH) ₂ Nanosheets. ACS Applied Energy Materials, 2022, 5, 3471-3476.	5.1	2
277	UV, blue, green, yellow-green and white LEDs fabricated by III-N semiconductors. , 0, , .		1
278	GaN diffractive microlenses for UV micro-optics system. , 0, , .		1
279	Improved esd reliability by using a modulation doped Al/sub 0.12/Ga/sub 0.88/N/GaN superlattice in nitride-based led. , 0, , .		1
280	Fabrication and emission characteristic of InGaN/GaN multiple quantum wells nanorods. , 2004, , IWA20.		1
281	Applications of transparent Al-doped ZnO contact on GaN-based power LED. , 2006, , .		1
282	Alternating current bias-assisted photoenhanced oxidation of n-GaN in dionized water. Optoelectronic and Microelectronic Materials and Devices (COMMAD), Conference on, 2008, , .	0.0	1
283	GaN-Based LEDs With GaN \$mu\$-Pillars Around Mesa, Patterned Substrate, and Reflector Under Pads. IEEE Photonics Technology Letters, 2009, 21, 1659-1661.	2.5	1
284	Ga-Doped ZnO/GaN Schottky Barrier UV Band-Pass Photodetector with a Low-Temperature-Grown GaN Cap Layer. Japanese Journal of Applied Physics, 2010, 49, 04DF12.	1.5	1
285	Characteristics of InGaN/sapphire-based photovoltaic devices with different superlattice absorption layers and buffer layers. , 2011, , .		1
286	Efficiency enhancement of InGaN/GaN multiple quantum well solar cells using CdS quantum dots and distributed Bragg reflectors. , 2013, , .		1
287	Effects of Temperature on Niobium-Doped MgZnO Films Grown Using Radio-Frequency Magnetron Sputtering. ECS Journal of Solid State Science and Technology, 2015, 4, Q96-Q100.	1.8	1
288	GaN-Based Dual Color LEDs with P-Type Insertion Layer for Balancing Two-Color Intensities. , 2013, , .		1

#	Article	IF	CITATIONS
289	InGaN-based light-emitting diodes with Al content graded p-AlxGa1-xN top contact layer. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 143, 115352.	2.7	1
290	Electrical-efficiency analysis of GaN-based light-emitting diodes with interdigitated-mesa geometry. Journal of Electronic Materials, 2003, 32, 312-315.	2.2	0
291	Optical properties of InGaN/GaN nanorods fabricated by inductively coupled plasma etching. , 0, , .		Ο
292	External Field Effects on Photoluminescence Properties of Blue InGaN Quantum-Well Diodes. , 2006, , .		0
293	Modulation-speed enhancement of a GaN based green light-emitting-diode (LED) by use of n-type barrier doping for plastic optical fiber (POF) communication. , 2006, , .		Ο
294	Phosphor-Free GaN-Based Cascade Transverse Junction Light Emitting Diode Arrays for the High-Power Generation of White-Light. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2007, , .	0.0	0
295	Four-Wavelengths-Mixed White Light Emitting Diodes with Dual-Wavelength-Pumped Green and Red Phosphors. Japanese Journal of Applied Physics, 2008, 47, 6317-6319.	1.5	Ο
296	High-speed and high-power GaN-based cascade green Light-Emitting-Diode arrays for in-car data communication. , 2008, , .		0
297	Array of GaN-based transverse junction blue light emitting diodes with regrown n-type regimes. Proceedings of SPIE, 2009, , .	0.8	Ο
298	Very-High Temperature (200°C) Operation of GaN-Based Cascade Green Light Emitting Diode for Plastic Optical Fiber Communication. , 2010, , .		0
299	Erbium-Doped All-Fiber Green Up-Conversion Amplified Emission in Silica-Based Fiber System. Japanese Journal of Applied Physics, 2010, 49, 032701.	1.5	Ο
300	Enhanced hydrogen gas generation rate by n-GaN photoelectrode with immersed finger-type indium tin oxide ohmic contacts. , 2011, , .		0
301	Biomimetic surface nanostructure on GaN/In <inf>0.25</inf> Ga <inf>0.75</inf> N solar cells for broad angular enhancement. , 2011, , .		Ο
302	Investigation of the efficiency-droop mechanism in a GaN based blue light-emitting diodes using a very-fast electrical-optical pump-probe technique. , 2011, , .		0
303	Study of efficiency-droop mechanism in vertical red light-emitting diodes using electrical-to-optical impulse responses. , 2012, , .		Ο
304	THz Acoustic Attenuation of Silica studied by Ultrafast Acoustic Phonon Spectroscopy. , 2013, , .		0
305	Current-voltage characteristics of n-AlMgZnO/p-GaN junction diodes. , 2013, , .		0
306	THz acoustic spectroscopy based on GaN nanostructures. Proceedings of SPIE, 2014, , .	0.8	0

#	Article	IF	CITATIONS
307	Improved light extraction of nitride-based flip-chip light-emitting diodes by forming air voids on Ar-implanted sapphire substrate. , 2014, , .		Ο
308	Thermal stability of post-growth-annealed Ga-doped MgZnO films grown by the RF sputtering method. Materials Research Society Symposia Proceedings, 2014, 1675, 41-44.	0.1	0
309	Characterization of Nb-doped MgZnO films grown by a radio-frequency magnetron sputtering system. , 2015, , .		0
310	Al-doped MgZnO/p-AlGaN heterojunction and their application in ultraviolet photodetectors. Proceedings of SPIE, 2015, , .	0.8	0
311	Multiple-layered type-II GaSb/GaAs quantum ring solar cells under concentrated solar illumination. , 2016, , .		Ο
312	The development of high-speed III-nitride based light-emitting diode for visible light and plastic optical fiber communications. , 2017, , .		0
313	A random laser with tunable threshold by bending curvature. , 2019, , .		0
314	Suppressing the Initial Growth of Sidewall GaN by Modifying AlN-Coated Patterned Sapphire with KOH-Based Etchant. ECS Journal of Solid State Science and Technology, 2020, 9, 016012.	1.8	0
315	Effect of KOH-Treatment at Sol–Gel Derived NiOx Film on GaN Photoanodes in Hydrogen Generation. ACS Applied Energy Materials, 2021, 4, 8030-8035.	5.1	Ο
316	Achievement of 110-nm-Wide Spectral Width in Monolithic Tunnel-Junction Light-Emitting Diode. IEEE Journal of Quantum Electronics, 2021, 57, 1-6.	1.9	0
317	The Bandwidth-Efficiency Product Enhancement of GaN Based Photodiodes by launching a Low-Temperature-Grown Recombination Center in Photo-Absorption Region. , 2009, , .		0
318	Femtosecond excitation of confined acoustic modes in 2-D arrayed GaN nanorods. , 2011, , .		0
319	III–V Nitride-Based Photodetection. Series in Optics and Optoelectronics, 2017, , 597-613.	0.0	0
320	Bending-induced tunable threshold in random laser. , 2019, , .		0
321	Ultra-short photoacoustic pulse generation through hot electron pressure in two-dimensional electron gas. Optics Express, 2020, 28, 34045.	3.4	0