Steven R Houser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/650511/publications.pdf Version: 2024-02-01

		30070	32842
135	10,751	54	100
papers	citations	h-index	g-index
137	137	137	14243
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle. Science, 2016, 351, 271-275.	12.6	634
2	Embryonic Stem Cell–Derived Exosomes Promote Endogenous Repair Mechanisms and Enhance Cardiac Function Following Myocardial Infarction. Circulation Research, 2015, 117, 52-64.	4.5	598
3	Cellular Basis of Abnormal Calcium Transients of Failing Human Ventricular Myocytes. Circulation Research, 2003, 92, 651-658.	4.5	420
4	Cardiomyocyte Regeneration. Circulation, 2017, 136, 680-686.	1.6	417
5	Animal Models of Heart Failure. Circulation Research, 2012, 111, 131-150.	4.5	378
6	Ca2+- and mitochondrial-dependent cardiomyocyte necrosis as a primary mediator of heart failure. Journal of Clinical Investigation, 2007, 117, 2431-2444.	8.2	359
7	The Mitochondrial Calcium Uniporter Matches Energetic Supply with Cardiac Workload during Stress and Modulates Permeability Transition. Cell Reports, 2015, 12, 23-34.	6.4	304
8	Abnormalities of Calcium Cycling in the Hypertrophied and Failing Heart. Journal of Molecular and Cellular Cardiology, 2000, 32, 1595-1607.	1.9	299
9	The mitochondrial Na+/Ca2+ exchanger is essential for Ca2+ homeostasis and viability. Nature, 2017, 545, 93-97.	27.8	294
10	Bone marrow cells adopt the cardiomyogenic fate <i>in vivo</i> . Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17783-17788.	7.1	292
11	Circular RNA CircFndc3b modulates cardiac repair after myocardial infarction via FUS/VEGF-A axis. Nature Communications, 2019, 10, 4317.	12.8	280
12	L-Type Ca 2+ Channel Density and Regulation Are Altered in Failing Human Ventricular Myocytes and Recover After Support With Mechanical Assist Devices. Circulation Research, 2002, 91, 517-524.	4.5	254
13	A Tension-Based Model Distinguishes Hypertrophic versus Dilated Cardiomyopathy. Cell, 2016, 165, 1147-1159.	28.9	193
14	Is Depressed Myocyte Contractility Centrally Involved in Heart Failure?. Circulation Research, 2003, 92, 350-358.	4.5	184
15	Ca 2+ Influx–Induced Sarcoplasmic Reticulum Ca 2+ Overload Causes Mitochondrial-Dependent Apoptosis in Ventricular Myocytes. Circulation Research, 2005, 97, 1009-1017.	4.5	181
16	Dedifferentiation, Proliferation, and Redifferentiation of Adult Mammalian Cardiomyocytes After Ischemic Injury. Circulation, 2017, 136, 834-848.	1.6	174
17	MCUR1 Is a Scaffold Factor for the MCU Complex Function and Promotes Mitochondrial Bioenergetics. Cell Reports, 2016, 15, 1673-1685.	6.4	170
18	SPG7 Is an Essential and Conserved Component of the Mitochondrial Permeability Transition Pore. Molecular Cell. 2015. 60. 47-62.	9.7	165

#	Article	IF	CITATIONS
19	GDF11 Does Not Rescue Aging-Related Pathological Hypertrophy. Circulation Research, 2015, 117, 926-932.	4.5	158
20	Bone-Derived Stem Cells Repair the Heart After Myocardial Infarction Through Transdifferentiation and Paracrine Signaling Mechanisms. Circulation Research, 2013, 113, 539-552.	4.5	156
21	Diabetic Cardiomyopathy: Current and Future Therapies. Beyond Glycemic Control. Frontiers in Physiology, 2018, 9, 1514.	2.8	154
22	Electrophysiological Alterations After Mechanical Circulatory Support in Patients With Advanced Cardiac Failure. Circulation, 2001, 104, 1241-1247.	1.6	134
23	Patients With End-Stage Congestive Heart Failure Treated With β-Adrenergic Receptor Antagonists Have Improved Ventricular Myocyte Calcium Regulatory Protein Abundance. Circulation, 2001, 104, 1012-1018.	1.6	131
24	CaMKII Negatively Regulates Calcineurin–NFAT Signaling in Cardiac Myocytes. Circulation Research, 2009, 105, 316-325.	4.5	129
25	Increased Cardiac Myocyte Progenitors in Failing Human Hearts. Circulation, 2008, 118, 649-657.	1.6	127
26	Adolescent Feline Heart Contains a Population of Small, Proliferative Ventricular Myocytes With Immature Physiological Properties. Circulation Research, 2007, 100, 536-544.	4.5	112
27	A Caveolae-Targeted L-Type Ca ²⁺ Channel Antagonist Inhibits Hypertrophic Signaling Without Reducing Cardiac Contractility. Circulation Research, 2012, 110, 669-674.	4.5	112
28	Transient Receptor Potential Channels Contribute to Pathological Structural and Functional Remodeling After Myocardial Infarction. Circulation Research, 2014, 115, 567-580.	4.5	101
29	Calcium influx through Cav1.2 is a proximal signal for pathological cardiomyocyte hypertrophy. Journal of Molecular and Cellular Cardiology, 2011, 50, 460-470.	1.9	100
30	LETM1â€dependent mitochondrial Ca ²⁺ flux modulates cellular bioenergetics and proliferation. FASEB Journal, 2014, 28, 4936-4949.	0.5	99
31	Prolyl Hydroxylase Domain Protein 2 Silencing Enhances the Survival and Paracrine Function of Transplanted Adipose-Derived Stem Cells in Infarcted Myocardium. Circulation Research, 2013, 113, 288-300.	4.5	97
32	STIM1 elevation in the heart results in aberrant Ca2+ handling and cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2015, 87, 38-47.	1.9	97
33	Direct Evidence for Microdomain-Specific Localization and Remodeling of Functional L-Type Calcium Channels in Rat and Human Atrial Myocytes. Circulation, 2015, 132, 2372-2384.	1.6	96
34	Neonatal Transplantation Confers Maturation of PSC-Derived Cardiomyocytes Conducive to Modeling Cardiomyopathy. Cell Reports, 2017, 18, 571-582.	6.4	90
35	Does Contractile Ca ²⁺ Control Calcineurin-NFAT Signaling and Pathological Hypertrophy in Cardiac Myocytes?. Science Signaling, 2008, 1, pe31.	3.6	85
36	Repair of the Injured Adult Heart Involves New Myocytes Potentially Derived From Resident Cardiac Stem Cells. Circulation Research, 2011, 108, 1226-1237.	4.5	85

#	Article	IF	CITATIONS
37	Hyperphosphorylation of the Cardiac Ryanodine Receptor at Serine 2808 Is Not Involved in Cardiac Dysfunction After Myocardial Infarction. Circulation Research, 2012, 110, 831-840.	4.5	84
38	α1C-dependent T-type Ca2+ current antagonizes cardiac hypertrophy through a NOS3-dependent mechanism in mice. Journal of Clinical Investigation, 2009, 119, 3787-3796.	8.2	83
39	Alterations in Early Action Potential Repolarization Causes Localized Failure of Sarcoplasmic Reticulum Ca 2+ Release. Circulation Research, 2005, 96, 543-550.	4.5	81
40	Ca2+ influx through L-type Ca2+ channels and transient receptor potential channels activates pathological hypertrophy signaling. Journal of Molecular and Cellular Cardiology, 2012, 53, 657-667.	1.9	81
41	microRNA in Cardiovascular Aging and Age-Related Cardiovascular Diseases. Frontiers in Medicine, 2017, 4, 74.	2.6	80
42	HDAC inhibition improves cardiopulmonary function in a feline model of diastolic dysfunction. Science Translational Medicine, 2020, 12, .	12.4	75
43	GRK5-Mediated Exacerbation of Pathological Cardiac Hypertrophy Involves Facilitation of Nuclear NFAT Activity. Circulation Research, 2014, 115, 976-985.	4.5	73
44	Acute Catecholamine Exposure Causes Reversible Myocyte Injury Without Cardiac Regeneration. Circulation Research, 2016, 119, 865-879.	4.5	71
45	HDAC Inhibition Reverses Preexisting Diastolic Dysfunction and Blocks Covert Extracellular Matrix Remodeling. Circulation, 2021, 143, 1874-1890.	1.6	71
46	Ca ²⁺ Influx Through T- and L-Type Ca ²⁺ Channels Have Different Effects on Myocyte Contractility and Induce Unique Cardiac Phenotypes. Circulation Research, 2008, 103, 1109-1119.	4.5	69
47	Sorafenib Cardiotoxicity Increases Mortality After Myocardial Infarction. Circulation Research, 2014, 114, 1700-1712.	4.5	69
48	Finding the Rhythm of Sudden Cardiac Death. Circulation Research, 2015, 116, 1989-2004.	4.5	68
49	Cellular Basis of Contractile Derangements of Hypertrophied Feline Ventricular Myocytes. Journal of Molecular and Cellular Cardiology, 1997, 29, 1823-1835.	1.9	67
50	Role of RyR2 Phosphorylation in Heart Failure and Arrhythmias. Circulation Research, 2014, 114, 1320-1327.	4.5	67
51	Voltage dependence of contraction and calcium current in severely hypertrophied feline ventricular myocytes. Journal of Molecular and Cellular Cardiology, 1991, 23, 717-726.	1.9	65
52	ls Growth Differentiation Factor 11 a Realistic Therapeutic for Aging-Dependent Muscle Defects?. Circulation Research, 2016, 118, 1143-1150.	4.5	64
53	Negative Regulation of miR-375 by Interleukin-10 Enhances Bone Marrow-Derived Progenitor Cell-Mediated Myocardial Repair and Function After Myocardial Infarction. Stem Cells, 2015, 33, 3519-3529.	3.2	63
54	Intracoronary Cytoprotective Gene Therapy. Journal of the American College of Cardiology, 2015, 66, 139-153.	2.8	58

#	Article	IF	CITATIONS
55	Echocardiographic Strain Analysis for the Early Detection of Left Ventricular Systolic/Diastolic Dysfunction and Dyssynchrony in a Mouse Model of Physiological Aging. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 455-461.	3.6	57
56	New Myocyte Formation in the Adult Heart. Circulation Research, 2018, 123, 159-176.	4.5	53
57	Challenges Facing Early Career Academic Cardiologists. Journal of the American College of Cardiology, 2014, 63, 2199-2208.	2.8	51
58	Opportunities for the Cardiovascular Community in the Precision Medicine Initiative. Circulation, 2016, 133, 226-231.	1.6	50
59	Sodium/calcium exchange contributes to contraction and relaxation in failed human ventricular myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 277, H714-H724.	3.2	49
60	Embryonic Stem Cell–Derived Cardiac Myocytes Are Not Ready for Human Trials. Circulation Research, 2014, 115, 335-338.	4.5	47
61	Are Resident c-Kit ⁺ Cardiac Stem Cells Really All That Are Needed to Mend a Broken Heart?. Circulation Research, 2013, 113, 1037-1039.	4.5	46
62	c-Cbl Inhibition Improves Cardiac Function and Survival in Response to Myocardial Ischemia. Circulation, 2014, 129, 2031-2043.	1.6	45
63	Cortical Bone Stem Cell Therapy Preserves Cardiac Structure and Function After Myocardial Infarction. Circulation Research, 2017, 121, 1263-1278.	4.5	45
64	Long-Term Caloric Restriction Improves Cardiac Function, Remodeling, Adrenergic Responsiveness, and Sympathetic Innervation in a Model of Postischemic Heart Failure. Circulation: Heart Failure, 2018, 11, e004153.	3.9	45
65	Interaction of the Joining Region in Junctophilin-2 With the L-Type Ca ²⁺ Channel Is Pivotal for Cardiac Dyad Assembly and Intracellular Ca ²⁺ Dynamics. Circulation Research, 2021, 128, 92-114.	4.5	45
66	Increasing Cardiac Contractility After Myocardial Infarction Exacerbates Cardiac Injury and Pump Dysfunction. Circulation Research, 2010, 107, 800-809.	4.5	43
67	Voltageâ€dependent Ca 2+ release from the SR of feline ventricular myocytes is explained by Ca 2+ â€induced Ca 2+ release. Journal of Physiology, 2000, 523, 533-548.	2.9	40
68	Hyperhomocysteinemia suppresses bone marrow CD34 ⁺ /VEGF receptor 2 ⁺ cells and inhibits progenitor cell mobilization and homing to injured vasculature—a role of β1â€integrin in progenitor cell migration and adhesion. FASEB Journal, 2015, 29, 3085-3099.	0.5	40
69	GDF11 Decreases Pressure Overload–Induced Hypertrophy, but Can Cause Severe Cachexia and Premature Death. Circulation Research, 2018, 123, 1220-1231.	4.5	40
70	β-Adrenergic receptor-mediated transactivation of epidermal growth factor receptor decreases cardiomyocyte apoptosis through differential subcellular activation of ERK1/2 and Akt. Journal of Molecular and Cellular Cardiology, 2014, 72, 39-51.	1.9	38
71	Role of STIM1 (Stromal Interaction Molecule 1) in Hypertrophy-Related Contractile Dysfunction. Circulation Research, 2017, 121, 125-136.	4.5	36
72	Cardiac G-Protein–Coupled Receptor Kinase 2 Ablation Induces a Novel Ca ²⁺ Handling Phenotype Resistant to Adverse Alterations and Remodeling After Myocardial Infarction. Circulation, 2012, 125, 2108-2118.	1.6	34

#	Article	IF	CITATIONS
73	β-Adrenergic Receptor–Mediated Cardiac Contractility Is Inhibited via Vasopressin Type 1A-Receptor–Dependent Signaling. Circulation, 2014, 130, 1800-1811.	1.6	34
74	A Feline HFpEF Model with Pulmonary Hypertension and Compromised Pulmonary Function. Scientific Reports, 2017, 7, 16587.	3.3	34
75	Junctophilin-2 tethers T-tubules and recruits functional L-type calcium channels to lipid rafts in adult cardiomyocytes. Cardiovascular Research, 2021, 117, 149-161.	3.8	34
76	Electrophysiological properties of neonatal rat ventricular myocytes with α1-adrenergic-induced hypertrophy. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 275, H577-H590.	3.2	31
77	Class I Histone Deacetylase Inhibition for the Treatment of Sustained Atrial Fibrillation. Journal of Pharmacology and Experimental Therapeutics, 2016, 358, 441-449.	2.5	31
78	Cardiomyocyte PKA Ablation Enhances Basal Contractility While Eliminates Cardiac β-Adrenergic Response Without Adverse Effects on the Heart. Circulation Research, 2019, 124, 1760-1777.	4.5	30
79	When Does Spontaneous Sarcoplasmic Reticulum CA 2+ Release Cause a Triggered Arrythmia? Cellular Versus Tissue Requirements. Circulation Research, 2000, 87, 725-727.	4.5	29
80	Unique Features of Cortical Bone Stem Cells Associated With Repair of the Injured Heart. Circulation Research, 2015, 117, 1024-1033.	4.5	29
81	G protein-coupled receptor kinase 5 (GRK5) contributes to impaired cardiac function and immune cell recruitment in post-ischemic heart failure. Cardiovascular Research, 2022, 118, 169-183.	3.8	27
82	American Heart Association Cardiovascular Genome-Phenome Study. Circulation, 2015, 131, 100-112.	1.6	26
83	Ca ²⁺ Signaling Domains Responsible For Cardiac Hypertrophy and Arrhythmias. Circulation Research, 2009, 104, 413-415.	4.5	25
84	Enhanced basal contractility but reduced excitation-contraction coupling efficiency and β-adrenergic reserve of hearts with increased Cav1.2 activity. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H519-H528.	3.2	25
85	Autologous câ€Kit+ Mesenchymal Stem Cell Injections Provide Superior Therapeutic Benefit as Compared to câ€Kit+ Cardiacâ€Derived Stem Cells in a Feline Model of Isoproterenolâ€Induced Cardiomyopathy. Clinical and Translational Science, 2015, 8, 425-431.	3.1	24
86	câ€Kit ⁺ Bone Marrow Stem Cells Differentiate into Functional Cardiac Myocytes. Clinical and Translational Science, 2009, 2, 26-32.	3.1	23
87	Obligatory role of neuronal nitric oxide synthase in the heart's antioxidant adaptation with exercise. Journal of Molecular and Cellular Cardiology, 2015, 81, 54-61.	1.9	22
88	G protein-coupled receptor kinase 2 contributes to impaired fatty acid metabolism in the failing heart. Journal of Molecular and Cellular Cardiology, 2018, 123, 108-117.	1.9	22
89	Phosphorylation of phospholamban at threonine-17 reduces cardiac adrenergic contractile responsiveness in chronic pressure overload-induced hypertrophy. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H61-H70.	3.2	21
90	The Gut Hormone Ghrelin Partially Reverses Energy Substrate Metabolic Alterations in the Failing Heart. Circulation: Heart Failure, 2014, 7, 643-651.	3.9	21

#	Article	IF	CITATIONS
91	Early morphological alterations of pressure-overloaded cat right ventricular myocardium. The Anatomical Record, 1983, 207, 417-426.	1.8	20
92	Platelet Endothelial Cell Adhesion Moleculeâ€1 Mediates Endothelialâ€Cardiomyocyte Communication and Regulates Cardiac Function. Journal of the American Heart Association, 2015, 4, e001210.	3.7	19
93	Caveolae-localized L-type Ca2+ channels do not contribute to function or hypertrophic signalling in the mouse heart. Cardiovascular Research, 2017, 113, 749-759.	3.8	19
94	L-Type Ca 2+ Currents Overlapping Threshold Na + Currents. Circulation Research, 2002, 90, 435-442.	4.5	18
95	Regulation of L-type calcium channel by phospholemman in cardiac myocytes. Journal of Molecular and Cellular Cardiology, 2015, 84, 104-111.	1.9	18
96	Cardiomyocyte Proliferation as a Source of New Myocyte Development in the Adult Heart. International Journal of Molecular Sciences, 2021, 22, 7764.	4.1	18
97	c-myc Gene expression is localized to the myocyte following hemodynamic overload in vivo. Journal of Cellular Biochemistry, 1994, 54, 78-84.	2.6	16
98	Cortical bone-derived stem cell therapy reduces apoptosis after myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H820-H829.	3.2	16
99	Cortical bone stem cells modify cardiac inflammation after myocardial infarction by inducing a novel macrophage phenotype. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H684-H701.	3.2	16
100	Imatinib Activates Pathological Hypertrophy by Altering Myocyte Calcium Regulation. Clinical and Translational Science, 2014, 7, 360-367.	3.1	15
101	The American Heart Association's New Institute for Precision Cardiovascular Medicine. Circulation, 2016, 134, 1913-1914.	1.6	15
102	Increasing Tâ€ŧype calcium channel activity by βâ€∎drenergic stimulation contributes to βâ€∎drenergic regulation of heart rates. Journal of Physiology, 2018, 596, 1137-1151.	2.9	15
103	Loss of Protease-Activated Receptor 4 Prevents Inflammation Resolution and Predisposes the Heart to Cardiac Rupture After Myocardial Infarction. Circulation, 2020, 142, 758-775.	1.6	14
104	Cortical bone stem cell-derived exosomes' therapeutic effect on myocardial ischemia-reperfusion and cardiac remodeling. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H1014-H1029.	3.2	14
105	Nuquantus: Machine learning software for the characterization and quantification of cell nuclei in complex immunofluorescent tissue images. Scientific Reports, 2016, 6, 23431.	3.3	13
106	A Simple Technique to Measure the Rate and Magnitude of Shortening of Single Isolated Cardiac Myocytes. IEEE Transactions on Biomedical Engineering, 1986, BME-33, 929-934.	4.2	12
107	Norepinephrine-induced cardiac hypertrophy of the cat heart. The Anatomical Record, 1991, 229, 505-510.	1.8	12
108	Stem cell therapy for heart failure. Current Treatment Options in Cardiovascular Medicine, 2009, 11, 316-327.	0.9	12

#	Article	IF	CITATIONS
109	Remodeling of repolarization and arrhythmia susceptibility in a myosin-binding protein C knockout mouse model. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H620-H630.	3.2	12
110	Acetylation of SERCA2a, Another Target for Heart Failure Treatment?. Circulation Research, 2019, 124, 1285-1287.	4.5	12
111	Cortical Bone Derived Stem Cells for Cardiac Wound Healing. Korean Circulation Journal, 2019, 49, 314.	1.9	12
112	Molecular Signature of HFpEF. JACC Basic To Translational Science, 2021, 6, 650-672.	4.1	12
113	Cardiac Remodeling During Pregnancy With Metabolic Syndrome. Circulation, 2021, 143, 699-712.	1.6	11
114	A Metricâ€Based System for Evaluating the Productivity of Preclinical Faculty at an Academic Medical Center in the Era of Clinical and Translational Science. Clinical and Translational Science, 2015, 8, 357-361.	3.1	9
115	Comparative effects of urocortins and stresscopin on cardiac myocyte contractility. Journal of Molecular and Cellular Cardiology, 2015, 86, 179-186.	1.9	8
116	Cardiometabolic HeartÂFailure and HFpEF. JACC Basic To Translational Science, 2019, 4, 422-424.	4.1	8
117	Identification and Comparison of Hyperglycemia-Induced Extracellular Vesicle Transcriptome in Different Mouse Stem Cells. Cells, 2020, 9, 2098.	4.1	7
118	Acute aerobic exercise increases exogenously infused bone marrow cell retention in the heart. Physiological Reports, 2015, 3, e12566.	1.7	6
119	Peptidylâ€Prolyl Isomerase 1 Regulates Ca 2+ Handling by Modulating Sarco(Endo)Plasmic Reticulum Calcium ATPase and Na 2+ /Ca 2+ Exchanger 1 Protein Levels and Function. Journal of the American Heart Association, 2017, 6, .	3.7	6
120	Does a Newly Characterized Cell From the Bone Marrow Repair the Heart After Acute Myocardial Infarction?. Circulation Research, 2018, 122, 1036-1038.	4.5	2
121	A low voltage activated Ca2+ current found in a subset of human ventricular myocytes. Channels, 2020, 14, 231-245.	2.8	2
122	Postsurgery echocardiography can predict the amount of ischemia-reperfusion injury and the resultant scar size. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H690-H698.	3.2	2
123	Potassium measurements in the extracellular spaces of normal and failing cat myocardium. Cardiovascular Research, 1983, 17, 642-648.	3.8	1
124	Response to Mattiazzi et al:. Circulation Research, 2008, 103, .	4.5	0
125	Calcium Fluxes and Homeostasis. , 2012, , 141-152.		0
126	Dear food industry: please don't pass the salt. Lancet, The, 2016, 388, 2109-2110.	13.7	0

#	Article	IF	CITATIONS
127	Thomas L. Force, MD: 1951-2020. Circulation Research, 2021, 128, 6-7.	4.5	0
128	Cavβ2a TG mice treated with hight fat diet and Lâ€Name is a model for HFpEF. FASEB Journal, 2021, 35, .	0.5	0
129	Response to Letter Regarding Article, "Cardiac Remodeling During Pregnancy With Metabolic Syndrome: Prologue of Pathological Remodeling― Circulation, 2021, 144, e69.	1.6	0
130	Sexâ€based differences in cardiac contractility are evident during stress. FASEB Journal, 2006, 20, A1448.	0.5	0
131	Abstract 2: Cortical Bone Stem Cells Derived Exosomes as Potent Modulator of Cardiac Immune Response and Repair After Injury. Circulation Research, 2016, 119, .	4.5	0
132	Abstract 53: Characterization of a Feline HFpEF Model Induced by Slow Progressive Pressure Overload. Circulation Research, 2016, 119, .	4.5	0
133	Abstract 364: Cortical Bone Stem Cells Derived Exosomes as Potent Modulator of Cardiac Immune Response and Repair After Injury. Circulation Research, 2016, 119, .	4.5	0
134	GRK5â€mediated Exacerbation of Ischemic Heart Failure Involves Cardiac Immune and Inflammatory Responses. FASEB Journal, 2019, 33, 676.7.	0.5	0
135	Abstract 760: Metabolic Syndrome Impairs Cardiac Remodeling During Pregnancy in Mice. Circulation Research, 2019, 125, .	4.5	0