Helena Carén

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6503527/publications.pdf

Version: 2024-02-01

		304743	254184
57	2,023	22	43
papers	citations	h-index	g-index
57	57	57	3720
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Genome-wide DNA Methylation Differences in Nonfunctioning Pituitary Adenomas With and Without Postsurgical Progression. Journal of Clinical Endocrinology and Metabolism, 2022, 107, 2318-2328.	3.6	6
2	Orthotopic Transplantation of Human Paediatric High-Grade Glioma in Zebrafish Larvae. Brain Sciences, 2022, 12, 625.	2.3	0
3	ETMR-10. Retrospective molecular re-evaluation of CNS PNETs; a population-based study. Neuro-Oncology, 2022, 24, i51-i51.	1.2	O
4	PATH-08. DNA methylation profiling improves routine diagnostics of paediatric CNS tumours: a prospective population-based study. Neuro-Oncology, 2022, 24, i159-i160.	1.2	0
5	Stemness and clinical features in relation to the subventricular zone in diffuse lower-grade glioma: an exploratory study. Neuro-Oncology Advances, 2022, 4, .	0.7	1
6	Spatial heterogeneity in DNA methylation and chromosomal alterations in diffuse gliomas and meningiomas. Modern Pathology, 2022, 35, 1551-1561.	5.5	13
7	DNA methylation alterations across time and space in paediatric brain tumours. Acta Neuropathologica Communications, 2022, 10, .	5.2	6
8	Genome-Wide DNA Methylation Differences in Patients With Non-Functioning Pituitary Adenomas With or Without Postsurgical Intervention. Journal of the Endocrine Society, 2021, 5, A643-A643.	0.2	0
9	DNA methylation profiling for molecular classification of adult diffuse lower-grade gliomas. Clinical Epigenetics, 2021, 13, 102.	4.1	24
10	A randomized phase II trial of efficacy and safety of the immunotherapy ALECSAT as an adjunct to radiotherapy and temozolomide for newly diagnosed glioblastoma. Neuro-Oncology Advances, 2021, 3, vdab156.	0.7	4
11	WHO Grade Loses Its Prognostic Value in Molecularly Defined Diffuse Lower-Grade Gliomas. Frontiers in Oncology, 2021, 11, 803975.	2.8	10
12	11q Deletion or ALK Activity Curbs DLG2 Expression to Maintain an Undifferentiated State in Neuroblastoma. Cell Reports, 2020, 32, 108171.	6.4	25
13	Human Pluripotent Stem Cell-Derived Hepatocytes Show Higher Transcriptional Correlation with Adult Liver Tissue than with Fetal Liver Tissue. ACS Omega, 2020, 5, 4816-4827.	3.5	4
14	Accumulation of DNA methylation alterations in paediatric glioma stem cells following fractionated dose irradiation. Clinical Epigenetics, 2020, 12, 26.	4.1	11
15	Patterns of care and clinical outcome in assumed glioblastoma without tissue diagnosis: A population-based study of 131 consecutive patients. PLoS ONE, 2020, 15, e0228480.	2.5	9
16	The clinical significance of the T2-FLAIR mismatch sign in grade II and III gliomas: a population-based study. BMC Cancer, 2020, 20, 450.	2.6	34
17	DNA methylation-based age estimation in pediatric healthy tissues and brain tumors. Aging, 2020, 12, 21037-21056.	3.1	22
18	Methylation Analysis Using Microarrays: Analysis and Interpretation. Methods in Molecular Biology, 2019, 1908, 205-217.	0.9	1

#	Article	IF	CITATIONS
19	Intratumor DNA methylation heterogeneity in glioblastoma: implications for DNA methylation-based classification. Neuro-Oncology, 2019, 21, 616-627.	1.2	83
20	The lncRNA TP73-AS1 is linked to aggressiveness in glioblastoma and promotes temozolomide resistance in glioblastoma cancer stem cells. Cell Death and Disease, 2019, 10, 246.	6.3	129
21	Individual Assignment of Adult Diffuse Gliomas into the EM/PM Molecular Subtypes Using a TaqMan Low-Density Array. Clinical Cancer Research, 2019, 25, 7068-7077.	7.0	5
22	Sense-Antisense IncRNA Pair Encoded by Locus 6p22.3 Determines Neuroblastoma Susceptibility via the USP36-CHD7-SOX9 Regulatory Axis. Cancer Cell, 2018, 33, 417-434.e7.	16.8	122
23	Determinants for Effective ALECSAT Immunotherapy Treatment on Autologous Patient-Derived Glioblastoma Stem Cells. Neoplasia, 2018, 20, 25-31.	5.3	9
24	PCLN-03. ORTHOTOPIC TRANSPLANTATION OF PAEDIATRIC GLIOMA STEM CELLS IN MICE MIRRORS THE CLINICAL COURSE OF THE PATIENT. Neuro-Oncology, 2018, 20, i155-i155.	1.2	0
25	Cell line-based xenograft mouse model of paediatric glioma stem cells mirrors the clinical course of the patient. Carcinogenesis, 2018, 39, 1304-1309.	2.8	15
26	Comparative transcriptomics of hepatic differentiation of human pluripotent stem cells and adult human liver tissue. Physiological Genomics, 2017, 49, 430-446.	2.3	11
27	Validation of the MethylationEPIC BeadChip for fresh-frozen and formalin-fixed paraffin-embedded tumours. Clinical Epigenetics, 2017, 9, 33.	4.1	57
28	High expression of MKP1/DUSP1 counteracts glioma stem cell activity and mediates HDAC inhibitor response. Oncogenesis, 2017, 6, 401.	4.9	22
29	Pediatric brain tumor cells release exosomes with a miRNA repertoire that differs from exosomes secreted by normal cells. Oncotarget, 2017, 8, 90164-90175.	1.8	39
30	Stem cell cultures derived from pediatric brain tumors accurately model the originating tumors. Oncotarget, 2017, 8, 18626-18639.	1.8	30
31	Patient-derived cells modeling pediatric glioma. Aging, 2017, 9, 1353-1354.	3.1	0
32	Highly Synchronized Expression of Lineage-Specific Genes during <i>In Vitro </i> Hepatic Differentiation of Human Pluripotent Stem Cell Lines. Stem Cells International, 2016, 2016, 1-22.	2.5	11
33	MethPed: an R package for the identification of pediatric brain tumor subtypes. BMC Bioinformatics, 2016, 17, 262.	2.6	7
34	Alterations in Tumor DNA Are Related to Short Postoperative Survival in Patients Resected for Pancreatic Carcinoma Aimed at Cure. Pancreas, 2016, 45, 900-907.	1.1	2
35	Differentiation therapy for glioblastoma $\hat{a} \in \text{``too many obstacles?'}$. Molecular and Cellular Oncology, 2016, 3, e1124174.	0.7	15
36	Preoperative systemic levels of VEGFA, ILâ€7, ILâ€17A, and TNFâ€Î² delineate two distinct groups of children with brain tumors. Pediatric Blood and Cancer, 2016, 63, 2112-2122.	1.5	14

#	Article	IF	Citations
37	Rapid and specific hypomethylation of enhancers in endothelial cells during adaptation to cell culturing. Epigenetics, 2016 , 11 , 614 - 624 .	2.7	5
38	Genome-wide methylation profiling identifies novel methylated genes in neuroblastoma tumors. Epigenetics, 2016, 11, 74-84.	2.7	63
39	MethPed: a DNA methylation classifier tool for the identification of pediatric brain tumor subtypes. Clinical Epigenetics, 2015, 7, 62.	4.1	33
40	Aberrant immunostaining pattern of the CD24 glycoprotein in clinical samples and experimental models of pediatric medulloblastomas. Journal of Neuro-Oncology, 2015, 123, 1-13.	2.9	13
41	Glioblastoma Stem Cells Respond to Differentiation Cues but Fail to Undergo Commitment and Terminal Cell-Cycle Arrest. Stem Cell Reports, 2015, 5, 829-842.	4.8	93
42	Dynamic Enhancer Methylation - A Previously Unrecognized Switch for Tissue-Type Plasminogen Activator Expression. PLoS ONE, 2015, 10, e0141805.	2.5	7
43	The Dynamics of DNA Methylation Covariation Patterns in Carcinogenesis. PLoS Computational Biology, 2014, 10, e1003709.	3.2	52
44	The good, the bad and the ugly: Epigenetic mechanisms in glioblastoma. Molecular Aspects of Medicine, 2013, 34, 849-862.	6.4	46
45	Integrated virus-host methylome analysis in head and neck squamous cell carcinoma. Epigenetics, 2013, 8, 953-961.	2.7	31
46	Widespread resetting of DNA methylation in glioblastoma-initiating cells suppresses malignant cellular behavior in a lineage-dependent manner. Genes and Development, 2013, 27, 654-669.	5.9	121
47	The RASSF gene family members RASSF5, RASSF6 and RASSF7 show frequent DNA methylation in neuroblastoma. Molecular Cancer, 2012, 11, 40.	19.2	69
48	Genomic Profiling of Neuroblastoma Tumors – Prognostic Impact of Genomic Aberrations. Pediatric Cancer, 2012, , 217-222.	0.0	0
49	Identification of epigenetically regulated genes that predict patient outcome in neuroblastoma. BMC Cancer, 2011, 11, 66.	2.6	67
50	Comprehensive SNP array study of frequently used neuroblastoma cell lines; copy neutral loss of heterozygosity is common in the cell lines but uncommon in primary tumors. BMC Genomics, 2011, 12, 443.	2.8	33
51	Appearance of the Novel Activating F1174S ALK Mutation in Neuroblastoma Correlates with Aggressive Tumor Progression and Unresponsiveness to Therapy. Cancer Research, 2011, 71, 98-105.	0.9	80
52	High-risk neuroblastoma tumors with $11q$ -deletion display a poor prognostic, chromosome instability phenotype with later onset. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4323-4328.	7.1	200
53	High-resolution array copy number analyses for detection of deletion, gain, amplification and copy-neutral LOH in primary neuroblastoma tumors: Four cases of homozygous deletions of the CDKN2A gene. BMC Genomics, 2008, 9, 353.	2.8	84
54	High incidence of DNA mutations and gene amplifications of the <i>ALK</i> gene in advanced sporadic neuroblastoma tumours. Biochemical Journal, 2008, 416, 153-159.	3.7	246

#	Article	IF	CITATIONS
55	A cluster of genes located in $1p36$ are down-regulated in neuroblastomas with poor prognosis, but not due to CpG island methylation. Molecular Cancer, 2005, 4, 10.	19.2	35
56	DNA microarray analysis of chromosomal susceptibility regions to identify candidate genes for allergic disease: A pilot study. Acta Oto-Laryngologica, 2004, 124, 813-819.	0.9	4
57	$11\mathrm{q}$ Deletion or ALK Activity Curbs DLG2 Expression to Maintain an Undifferentiated State in Neuroblastoma. SSRN Electronic Journal, 0, , .	0.4	0