Jie Hou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6503509/publications.pdf

Version: 2024-02-01

361413 265206 2,108 42 48 20 citations h-index g-index papers 50 50 50 2238 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The CAFA challenge reports improved protein function prediction and new functional annotations for hundreds of genes through experimental screens. Genome Biology, 2019, 20, 244.	8.8	261
2	DeepQA: improving the estimation of single protein model quality with deep belief networks. BMC Bioinformatics, 2016, 17, 495.	2.6	156
3	Protein tertiary structure modeling driven by deep learning and contact distance prediction in CASP13. Proteins: Structure, Function and Bioinformatics, 2019, 87, 1165-1178.	2.6	149
4	DNCON2: improved protein contact prediction using two-level deep convolutional neural networks. Bioinformatics, 2018, 34, 1466-1472.	4.1	148
5	Bioinformatics Methods for Mass Spectrometry-Based Proteomics Data Analysis. International Journal of Molecular Sciences, 2020, 21, 2873.	4.1	134
6	DeepSF: deep convolutional neural network for mapping protein sequences to folds. Bioinformatics, 2018, 34, 1295-1303.	4.1	127
7	Improving Protein Fold Recognition by Deep Learning Networks. Scientific Reports, 2015, 5, 17573.	3.3	107
8	Blind prediction of homo―and heteroâ€protein complexes: The CASP13â€CAPRI experiment. Proteins: Structure, Function and Bioinformatics, 2019, 87, 1200-1221.	2.6	99
9	QAcon: single model quality assessment using protein structural and contact information with machine learning techniques. Bioinformatics, 2017, 33, 586-588.	4.1	91
10	Estimation of model accuracy in CASP13. Proteins: Structure, Function and Bioinformatics, 2019, 87, 1361-1377.	2.6	78
11	Cryo-EM model validation recommendations based on outcomes of the 2019 EMDataResource challenge. Nature Methods, 2021, 18, 156-164.	19.0	73
12	Accelerating extended least-squares migration with weighted conjugate gradient iteration. Geophysics, 2016, 81, S165-S179.	2.6	70
13	Deep Learning to Predict Protein Backbone Structure from High-Resolution Cryo-EM Density Maps. Scientific Reports, 2020, 10, 4282.	3.3	56
14	Global impacts of chromosomal imbalance on gene expression in <i>Arabidopsis</i> and other taxa. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11321-E11330.	7.1	51
15	Deep learning methods for protein torsion angle prediction. BMC Bioinformatics, 2017, 18, 417.	2.6	46
16	DeepDist: real-value inter-residue distance prediction with deep residual convolutional network. BMC Bioinformatics, 2021, 22, 30.	2.6	37
17	DeepGRN: prediction of transcription factor binding site across cell-types using attention-based deep neural networks. BMC Bioinformatics, 2021, 22, 38.	2.6	35
18	Analysis of several key factors influencing deep learning-based inter-residue contact prediction. Bioinformatics, 2020, 36, 1091-1098.	4.1	29

#	Article	IF	CITATIONS
19	Sequence of the supernumerary B chromosome of maize provides insight into its drive mechanism and evolution. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	25
20	<scp>DNSS2</scp> : Improved ab initio protein secondary structure prediction using advanced deep learning architectures. Proteins: Structure, Function and Bioinformatics, 2021, 89, 207-217.	2.6	24
21	ConEVA: a toolbox for comprehensive assessment of protein contacts. BMC Bioinformatics, 2016, 17, 517.	2.6	23
22	The MULTICOM Protein Structure Prediction Server Empowered by Deep Learning and Contact Distance Prediction. Methods in Molecular Biology, 2020, 2165, 13-26.	0.9	23
23	Genomic imbalance determines positive and negative modulation of gene expression in diploid maize. Plant Cell, 2021, 33, 917-939.	6.6	22
24	Predominantly inverse modulation of gene expression in genomically unbalanced disomic haploid maize. Plant Cell, 2021, 33, 901-916.	6.6	22
25	An analysis and evaluation of the WeFold collaborative for protein structure prediction and its pipelines in CASP11 and CASP12. Scientific Reports, 2018, 8, 9939.	3.3	19
26	An overview of bioinformatics methods for modeling biological pathways in yeast. Briefings in Functional Genomics, 2016, 15, 95-108.	2.7	18
27	Improving protein tertiary structure prediction by deep learning and distance prediction in <scp>CASP14</scp> . Proteins: Structure, Function and Bioinformatics, 2022, 90, 58-72.	2.6	18
28	Protein contact prediction by integrating deep multiple sequence alignments, coevolution and machine learning. Proteins: Structure, Function and Bioinformatics, 2018, 86, 84-96.	2.6	15
29	Magnitude of modulation of gene expression in aneuploid maize depends on the extent of genomic imbalance. Journal of Genetics and Genomics, 2020, 47, 93-103.	3.9	15
30	Artificial intelligence advances for de novo molecular structure modeling in cryoâ€electron microscopy. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2022, 12, e1542.	14.6	15
31	Recent Progress of Machine Learning in Gene Therapy. Current Gene Therapy, 2022, 22, 132-143.	2.0	15
32	The Gene Balance Hypothesis: Epigenetics and Dosage Effects in Plants. Methods in Molecular Biology, 2020, 2093, 161-171.	0.9	14
33	Improving deep learning-based protein distance prediction in CASP14. Bioinformatics, 2021, 37, 3190-3196.	4.1	11
34	Protein model accuracy estimation empowered by deep learning and inter-residue distance prediction in CASP14. Scientific Reports, 2021, 11, 10943.	3.3	10
35	SAXSDom: Modeling multidomain protein structures using smallâ€angle Xâ€ay scattering data. Proteins: Structure, Function and Bioinformatics, 2020, 88, 775-787.	2.6	9
36	DISTEVAL: a web server for evaluating predicted protein distances. BMC Bioinformatics, 2021, 22, 8.	2.6	9

#	Article	IF	Citations
37	Genetic dissection of Arabidopsis MAP kinase phosphatase 1-dependent PAMP-induced transcriptional responses. Journal of Experimental Botany, 2017, 68, 5207-5220.	4.8	8
38	Heme oxygenase promotes Bâ€Rafâ€dependent melanosphere formation. Pigment Cell and Melanoma Research, 2020, 33, 850-868.	3.3	8
39	Effect of aneuploidy of a nonâ€essential chromosome on gene expression in maize. Plant Journal, 2022, 110, 193-211.	5 . 7	8
40	From Gigabyte to Kilobyte: A Bioinformatics Protocol for Mining Large RNA-Seq Transcriptomics Data. PLoS ONE, 2015, 10, e0125000.	2.5	7
41	PairedFB: a full hierarchical Bayesian model for paired RNA-seq data with heterogeneous treatment effects. Bioinformatics, 2019, 35, 787-797.	4.1	5
42	Deep Ranking in Template-free Protein Structure Prediction. , 2020, , .		5
43	The renoprotective effects of soy protein in the aging kidney. Medical Research Archives, 2020, 8, .	0.2	4
44	Exploring soybean metabolic pathways based on probabilistic graphical model and knowledge-based methods. Eurasip Journal on Bioinformatics and Systems Biology, 2015, 2015, 5.	1.4	3
45	GNET2: an R package for constructing gene regulatory networks from transcriptomic data. Bioinformatics, 2020, 37, 2068-2069.	4.1	1
46	Performance Evaluation of Viral Infection Diagnosis using T-Cell Receptor Sequence and Artificial Intelligence., 2020,,.		1
47	Dosage-sensitive miRNAs trigger modulation of gene expression during genomic imbalance in maize. Nature Communications, 2022, 13 , .	12.8	1
48	MULTICOM2 open-source protein structure prediction system powered by deep learning and distance prediction. Scientific Reports, 2021, 11, 13155.	3.3	0