Haoqing Hou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6503190/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Simultaneous electrochemical determination of dopamine, uric acid and ascorbic acid using palladium nanoparticle-loaded carbon nanofibers modified electrode. Biosensors and Bioelectronics, 2008, 24, 632-637.	10.1	608
2	Recent progress in carbon-based materials for supercapacitor electrodes: a review. Journal of Materials Science, 2021, 56, 173-200.	3.7	474
3	An Intrinsically Stretchable and Compressible Supercapacitor Containing a Polyacrylamide Hydrogel Electrolyte. Angewandte Chemie - International Edition, 2017, 56, 9141-9145.	13.8	458
4	Development of carbon nanofibers from aligned electrospun polyacrylonitrile nanofiber bundles and characterization of their microstructural, electrical, and mechanical properties. Polymer, 2009, 50, 2999-3006.	3.8	380
5	Electrospun polyimide nanofiber-based nonwoven separators for lithium-ion batteries. Journal of Power Sources, 2013, 226, 82-86.	7.8	377
6	Electrospun polyimide nanofibers and their applications. Progress in Polymer Science, 2016, 61, 67-103.	24.7	332
7	Electrospun and solution blown three-dimensional carbon fiber nonwovens for application as electrodes in microbial fuel cells. Energy and Environmental Science, 2011, 4, 1417.	30.8	289
8	Electrospun Palladium Nanoparticleâ€Loaded Carbon Nanofibers and Their Electrocatalytic Activities towards Hydrogen Peroxide and NADH. Advanced Functional Materials, 2008, 18, 441-448.	14.9	281
9	Elastic carbon foam via direct carbonization of polymer foam for flexible electrodes and organic chemical absorption. Energy and Environmental Science, 2013, 6, 2435.	30.8	275
10	Hierarchical Nanocomposites of Polyaniline Nanowire Arrays on Reduced Graphene Oxide Sheets for Supercapacitors. Scientific Reports, 2013, 3, 3568.	3.3	258
11	Simultaneous determination of dopamine, ascorbic acid and uric acid with electrospun carbon nanofibers modified electrode. Electrochemistry Communications, 2008, 10, 1431-1434.	4.7	194
12	Layered corrugated electrode macrostructures boost microbial bioelectrocatalysis. Energy and Environmental Science, 2012, 5, 9769.	30.8	187
13	Needle-like polyaniline nanowires on graphite nanofibers: hierarchical micro/nano-architecture for high performance supercapacitors. Journal of Materials Chemistry, 2012, 22, 5114.	6.7	178
14	High strength in combination with high toughness in robust and sustainable polymeric materials. Science, 2019, 366, 1376-1379.	12.6	162
15	Electrospinning Fabrication of High Strength and Toughness Polyimide Nanofiber Membranes Containing Multiwalled Carbon Nanotubes. Journal of Physical Chemistry B, 2009, 113, 9741-9748.	2.6	144
16	Microstructures and mechanical properties of aligned electrospun carbon nanofibers from binary composites of polyacrylonitrile and polyamic acid. Journal of Materials Science, 2018, 53, 15096-15106.	3.7	138
17	Dual-Bioinspired Design for Constructing Membranes with Superhydrophobicity for Direct Contact Membrane Distillation. Environmental Science & Technology, 2018, 52, 3027-3036.	10.0	130
18	Polyimide Nanofibers by "Green―Electrospinning via Aqueous Solution for Filtration Applications. ACS Sustainable Chemistry and Engineering, 2016, 4, 4797-4804.	6.7	126

#	Article	IF	CITATIONS
19	3D porous and ultralight carbon hybrid nanostructure fabricated from carbon foam covered by monolayer of nitrogen-doped carbon nanotubes for high performance supercapacitors. Journal of Power Sources, 2015, 280, 678-686.	7.8	121
20	Three-Dimensional Macroporous Carbon/Fe ₃ O ₄ -Doped Porous Carbon Nanorods for High-Performance Supercapacitor. ACS Sustainable Chemistry and Engineering, 2016, 4, 1531-1537.	6.7	118
21	Flexible and refractory tantalum carbide-carbon electrospun nanofibers with high modulus and electric conductivity. Materials Letters, 2017, 200, 97-100.	2.6	118
22	Nanofibers with diameter below one nanometer from electrospinning. RSC Advances, 2018, 8, 4794-4802.	3.6	117
23	Electrochemical Detection of Hydrazine Based on Electrospun Palladium Nanoparticle/Carbon Nanofibers. Electroanalysis, 2009, 21, 1869-1874.	2.9	115
24	Hierarchical three-dimensional micro/nano-architecture of polyaniline nanowires wrapped-on polyimide nanofibers for high performance lithium-ion battery separators. Journal of Power Sources, 2015, 299, 417-424.	7.8	110
25	Carbonization: A feasible route for reutilization of plastic wastes. Science of the Total Environment, 2020, 710, 136250.	8.0	110
26	Reticulated carbon foam derived from a sponge-like natural product as a high-performance anode in microbial fuel cells. Journal of Materials Chemistry, 2012, 22, 18609.	6.7	108
27	Graphitic carbon nanofibers developed from bundles of aligned electrospun polyacrylonitrile nanofibers containing phosphoric acid. Polymer, 2010, 51, 2360-2367.	3.8	106
28	Mechanical flexible PI/MWCNTs nanocomposites with high dielectric permittivity by electrospinning. European Polymer Journal, 2014, 59, 129-135.	5.4	106
29	Superlithiation of non-conductive polyimide toward high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 21216-21224.	10.3	105
30	Molecular engineering of carbonyl organic electrodes for rechargeable metal-ion batteries: fundamentals, recent advances, and challenges. Energy and Environmental Science, 2021, 14, 4228-4267.	30.8	100
31	Highly foldable PANi@CNTs/PU dielectric composites toward thin-film capacitor application. Materials Letters, 2017, 192, 25-28.	2.6	91
32	Tough and Transparent Nylon-6 Electrospun Nanofiber Reinforced Melamine–Formaldehyde Composites. ACS Applied Materials & Interfaces, 2012, 4, 2597-2603.	8.0	90
33	Polyimide/BaTiO3/MWCNTs three-phase nanocomposites fabricated by electrospinning with enhanced dielectric properties. Materials Letters, 2014, 135, 158-161.	2.6	89
34	Zn–Fe–ZIF-derived porous ZnFe ₂ O ₄ /C@NCNT nanocomposites as anodes for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 7793-7798.	10.3	87
35	One-Step Preparation of Highly Hydrophobic and Oleophilic Melamine Sponges via Metal-Ion-Induced Wettability Transition. ACS Applied Materials & amp; Interfaces, 2018, 10, 6652-6660.	8.0	87
36	High-performance polyamide-imide films and electrospun aligned nanofibers from an amide-containing diamine. Journal of Materials Science, 2019, 54, 6719-6727.	3.7	81

#	Article	IF	CITATIONS
37	Nitrogen-Doped Carbon Nanotubes Supported by Macroporous Carbon as an Efficient Enzymatic Biosensing Platform for Glucose. Analytical Chemistry, 2016, 88, 1371-1377.	6.5	80
38	Temperature-induced molecular orientation and mechanical properties of single electrospun polyimide nanofiber. Materials Letters, 2018, 216, 81-83.	2.6	79
39	Pd _{<i>x</i>} Co _{<i>y</i>} Nanoparticle/Carbon Nanofiber Composites with Enhanced Electrocatalytic Properties. ACS Catalysis, 2014, 4, 1825-1829.	11.2	78
40	Porous nitrogen doped carbon foam with excellent resilience for self-supported oxygen reduction catalyst. Carbon, 2015, 95, 388-395.	10.3	77
41	Nitrogen, sulfur co-doped hierarchical carbon encapsulated in graphene with "sphere-in-layer― interconnection for high-performance supercapacitor. Journal of Colloid and Interface Science, 2021, 599, 443-452.	9.4	76
42	Electrospun carbon nanofibers surface-grown with carbon nanotubes and polyaniline for use as high-performance electrode materials of supercapacitors. RSC Advances, 2014, 4, 23622-23629.	3.6	75
43	Pd–Ni Alloy Nanoparticle/Carbon Nanofiber Composites: Preparation, Structure, and Superior Electrocatalytic Properties for Sugar Analysis. Analytical Chemistry, 2014, 86, 5898-5905.	6.5	72
44	Superior mechanical enhancement of epoxy composites reinforced by polyimide nanofibers via a vacuum-assisted hot-pressing. Composites Science and Technology, 2019, 174, 20-26.	7.8	71
45	Polymeric Nanosprings by Bicomponent Electrospinning. Macromolecular Materials and Engineering, 2009, 294, 265-271.	3.6	65
46	A novel hydrogen peroxide sensor based on Ag nanoparticles electrodeposited on chitosan-graphene oxide/cysteamine-modified gold electrode. Journal of Solid State Electrochemistry, 2012, 16, 1693-1700.	2.5	65
47	High strength and high breaking load of single electrospun polyimide microfiber from water soluble precursor. Materials Letters, 2017, 201, 82-84.	2.6	65
48	High permittivity nanocomposites fabricated from electrospun polyimide/BaTiO ₃ hybrid nanofibers. Polymer Composites, 2016, 37, 794-801.	4.6	63
49	Electrochemical determination of oxalic acid using palladium nanoparticle-loaded carbon nanofiber modified electrode. Analytical Methods, 2010, 2, 855.	2.7	62
50	Free-standing nitrogen-doped carbon nanotubes at electrospun carbon nanofibers composite as an efficient electrocatalyst for oxygen reduction. Electrochimica Acta, 2014, 138, 318-324.	5.2	61
51	A mechanically durable, sustained corrosion-resistant photothermal nanofiber membrane for highly efficient solar distillation. Journal of Materials Chemistry A, 2019, 7, 22296-22306.	10.3	60
52	Mechanical characterization of single high-strength electrospun polyimide nanofibres. Journal Physics D: Applied Physics, 2008, 41, 025308.	2.8	58
53	Surface Modification of the LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Cathode Material by Coating with FePO ₄ with a Yolk–Shell Structure for Improved Electrochemical Performance. ACS Applied Materials & Interfaces, 2020, 12, 36046-36053.	8.0	58
54	Robust strong electrospun polyimide composite nanofibers from a ternary polyamic acid blend. Composites Communications, 2019, 15, 92-95.	6.3	57

#	Article	lF	CITATIONS
55	Three-dimensional cross-linked carbon network wrapped with ordered polyaniline nanowires for high-performance pseudo-supercapacitors. Journal of Power Sources, 2014, 268, 451-458.	7.8	56
56	Short electrospun carbon nanofiber reinforced polyimide composite with high dielectric permittivity. Materials Letters, 2015, 161, 431-434.	2.6	56
57	Hierarchically mesostructured porous TiO2 hollow nanofibers for high performance glucose biosensing. Biosensors and Bioelectronics, 2017, 92, 654-660.	10.1	56
58	Ultrafine hollow TiO2 nanofibers from core-shell composite fibers and their photocatalytic properties. Composites Communications, 2018, 9, 76-80.	6.3	56
59	Mechanical and thermal properties of electrospun polyimide/rGO composite nanofibers via in-situ polymerization and in-situ thermal conversion. European Polymer Journal, 2020, 141, 110083.	5.4	56
60	Template-free synthesis of hierarchical porous carbon derived from low-cost biomass for high-performance supercapacitors. RSC Advances, 2014, 4, 51072-51079.	3.6	54
61	Synthesis of polyacrylonitrile and mechanical properties of its electrospun nanofibers. E-Polymers, 2018, 18, 569-573.	3.0	54
62	Flexible PI/BaTiO3 dielectric nanocomposite fabricated by combining electrospinning and electrospraying. European Polymer Journal, 2013, 49, 2567-2571.	5.4	53
63	Electrospun polyimide nonwovens with enhanced mechanical and thermal properties by addition of trace plasticizer. Journal of Materials Science, 2020, 55, 5667-5679.	3.7	53
64	Molecular orientation in aligned electrospun polyimide nanofibers by polarized FT-IR spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 200, 339-344.	3.9	52
65	Electrospun nanofiber belts made from high performance copolyimide. Nanotechnology, 2008, 19, 015604.	2.6	50
66	Supercapacitors based on 3D network of activated carbon nanowhiskers wrapped-on graphitized electrospun nanofibers. Journal of Power Sources, 2013, 243, 880-886.	7.8	50
67	Facile synthesis of three-dimensional porous carbon with high surface area by calcining metal–organic framework for lithium-ion batteries anode materials. RSC Advances, 2014, 4, 61604-61610.	3.6	49
68	Electrospun nanofiber reinforced all-organic PVDF/PI tough composites and their dielectric permittivity. Materials Letters, 2015, 160, 515-517.	2.6	48
69	Mechanically strong sulfonated polybenzimidazole PEMs with enhanced proton conductivity. Materials Letters, 2019, 234, 354-356.	2.6	48
70	Effect of Different Bicomponent Electrospinning Techniques on the Formation of Polymeric Nanosprings. Macromolecular Materials and Engineering, 2009, 294, 781-786.	3.6	47
71	PdCo alloy nanoparticle–embedded carbon nanofiber for ultrasensitive nonenzymatic detection of hydrogen peroxide and nitrite. Journal of Colloid and Interface Science, 2015, 450, 168-173.	9.4	47
72	Development of high dielectric polyimides containing bipyridine units for polymer film capacitor. Reactive and Functional Polymers, 2016, 106, 93-98.	4.1	47

#	Article	IF	CITATIONS
73	Dielectric, mechanical and thermal properties of all-organic PI/PSF composite films by <i>in situ</i> polymerization. E-Polymers, 2020, 20, 226-232.	3.0	46
74	Asymmetric supercapacitor based on flexible TiC/CNF felt supported interwoven nickel-cobalt binary hydroxide nanosheets. Journal of Power Sources, 2016, 317, 57-64.	7.8	45
75	Fabrication and evaluation of polyamide 6 composites with electrospun polyimide nanofibers as skeletal framework. Composites Part B: Engineering, 2012, 43, 2382-2388.	12.0	44
76	Boosting electrochemical performance of electrospun silicon-based anode materials for lithium-ion battery by surface coating a second layer of carbon. Applied Surface Science, 2019, 494, 94-100.	6.1	44
77	Polyimide complexes with high dielectric performance: toward polymer film capacitor applications. Journal of Materials Chemistry C, 2016, 4, 6452-6456.	5.5	43
78	Mechanical properties and chemical resistance of electrospun polyterafluoroethylene fibres. RSC Advances, 2016, 6, 24250-24256.	3.6	43
79	Highly strong and highly tough electrospun polyimide/polyimide composite nanofibers from binary blend of polyamic acids. RSC Advances, 2014, 4, 59936-59942.	3.6	41
80	Fabrication of Sustained-release CA-PU Coaxial Electrospun Fiber Membranes for Plant Grafting Application. Carbohydrate Polymers, 2017, 169, 198-205.	10.2	41
81	Low Density, Thermally Stable, and Intrinsic Flame Retardant Poly(bis(benzimidazo)Benzophenanthrolineâ€dione) Sponge. Macromolecular Materials and Engineering, 2018, 303, 1700615.	3.6	41
82	Flexible and conductive titanium carbide–carbon nanofibers for the simultaneous determination of ascorbic acid, dopamine and uric acid. Journal of Materials Chemistry B, 2018, 6, 4610-4617.	5.8	41
83	Polyacrylonitrile-derived polyconjugated ladder structures for high performance all-organic dielectric materials. Chemical Communications, 2015, 51, 10127-10130.	4.1	39
84	High performance polyimide-Yb complex with high dielectric constant and low dielectric loss. Materials Letters, 2014, 133, 240-242.	2.6	36
85	Mechanical performance of aligned electrospun polyimide nanofiber belt at high temperature. Materials Letters, 2015, 140, 12-15.	2.6	36
86	Flexible titanium carbide–carbon nanofibers with high modulus and high conductivity by electrospinning. Materials Letters, 2016, 165, 91-94.	2.6	36
87	Electrospun carbon nanofibers with manganese dioxide nanoparticles for nonenzymatic hydrogen peroxide sensing. Journal of Materials Science, 2013, 48, 4843-4850.	3.7	35
88	Direct Electrochemistry of Cytochrome <i>c</i> Based on Poly(diallyldimethylammonium Chloride)― Graphene Nanosheets/Gold Nanoparticles Hybrid Nanocomposites and Its Biosensing. Electroanalysis, 2013, 25, 1400-1409.	2.9	35
89	Modification of precursor polymer using co-polymerization: A good way to high performance electrospun carbon nanofiber bundles. Materials Letters, 2014, 122, 178-181.	2.6	35
90	Nitrogen-doped carbon paper with 3D porous structure as a flexible free-standing anode for lithium-ion batteries. Scientific Reports, 2017, 7, 7769.	3.3	35

#	Article	IF	CITATIONS
91	High dielectric constant polyimide derived from 5,5′â€bis[(4â€amino) phenoxy]â€2,2′â€bipyrimidine. Journa Applied Polymer Science, 2014, 131, .	al of 2.6	33
92	Natural source derived carbon paper supported conducting polymer nanowire arrays for high performance supercapacitors. RSC Advances, 2015, 5, 14441-14447.	3.6	32
93	The morphology and spherulite growth of PLA stereocomplex in linear and branched PLLA/PDLA blends: effects of molecular weight and structure. CrystEngComm, 2016, 18, 274-282.	2.6	32
94	Preparation of Ni(OH) ₂ nanoplatelet/electrospun carbon nanofiber hybrids for highly sensitive nonenzymatic glucose sensors. RSC Advances, 2017, 7, 19345-19352.	3.6	31
95	Synthesis of Carbon Nanofibers for Mediatorless Sensitive Detection of NADH. Electroanalysis, 2008, 20, 1708-1713.	2.9	30
96	Heat-resistant polybenzoxazole nanofibers made by electrospinning. European Polymer Journal, 2014, 50, 61-68.	5.4	28
97	Thermal, mechanical and thermomechanical properties of tough electrospun poly(imide-co-benzoxazole) nanofiber belts. New Journal of Chemistry, 2015, 39, 7797-7804.	2.8	28
98	Spindlelike Y2O3:Eu3+ nanorod bundles: hydrothermal synthesis and photoluminescence properties. Journal of Materials Science, 2009, 44, 3687-3693.	3.7	27
99	High strength electrospun fibers. Polymers for Advanced Technologies, 2011, 22, 295-303.	3.2	26
100	Electrospun Poly[poly(2,5-benzophenone)]bibenzopyrrolone/polyimide nanofiber membrane for high-temperature and strong-alkali supercapacitor. Journal of Materials Science, 2021, 56, 9344-9355.	3.7	26
101	Flexible 3D nitrogen-doped carbon nanotubes nanostructure: A good matrix for enzyme immobilization and biosensing. Sensors and Actuators B: Chemical, 2016, 222, 829-838.	7.8	25
102	Crown ether-containing polyimides with high dielectric constant. RSC Advances, 2017, 7, 23309-23312.	3.6	25
103	Investigating the draw ratio and velocity of an electrically charged liquid jet during electrospinning. RSC Advances, 2019, 9, 13608-13613.	3.6	24
104	Polyamide-imide reinforced polytetrafluoroethylene nanofiber membranes with enhanced mechanical properties and thermal stabilities. Materials Letters, 2016, 182, 59-62.	2.6	23
105	High Cycling Stability of the LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Cathode via Surface Modification with Polyimide/Multiâ€Walled Carbon Nanotubes Composite Coating. Small, 2021, 17, e2102981.	10.0	23
106	Aqueous solution blending route for preparing low dielectric constant films of polyimide hybridized with polytetrafluoroethylene. Journal of Materials Science: Materials in Electronics, 2017, 28, 12683-12689.	2.2	22
107	Single electrospun nanofiber and aligned nanofiber belts from copolyimide containing pyrimidine units. New Journal of Chemistry, 2015, 39, 8956-8963.	2.8	21
108	Synthesis and properties of a high dielectric constant copolymer of a copper phthalocyanine oligomer grafted to amino-capped polyimide. Journal of Materials Chemistry C, 2017, 5, 8371-8375.	5.5	21

#	Article	IF	CITATIONS
109	Ultralight, Structurally Stable Electrospun Sponges with Tailored Hydrophilicity as a Novel Material Platform. ACS Applied Materials & Interfaces, 2020, 12, 18002-18011.	8.0	21
110	Facile hydrothermal synthesis of BiFeO ₃ nanoplates for enhanced supercapacitor properties. Functional Materials Letters, 2018, 11, 1850013.	1.2	19
111	A sensitive hydrogen peroxide sensor based on a three-dimensional N-doped carbon nanotube-hemin modified electrode. Analytical Methods, 2015, 7, 8439-8444.	2.7	18
112	Selfâ€Adhesive Polyimide (PI)@Reduced Graphene Oxide (RGO)/PI@Carbon Nanotube (CNT) Hierarchically Porous Electrodes: Maximizing the Utilization of Electroactive Materials for Organic Liâ€Ion Batteries. Energy Technology, 2020, 8, 2000397.	3.8	18
113	Freezing-Extraction/Vacuum-Drying Method for Robust and Fatigue-Resistant Polyimide Fibrous Aerogels and Their Composites with Enhanced Fire Retardancy. Engineering, 2023, 21, 152-161.	6.7	18
114	Heat and Solvent Resistant Electrospun Polybenzoxazole Nanofibers from Methoxy-Containing Polyaramide. Journal of Nanomaterials, 2010, 2010, 1-5.	2.7	17
115	Nano-boria reinforced polyimide composites with greatly enhanced thermal and mechanical properties via in-situ thermal conversion of boric acid. Composites Communications, 2017, 3, 14-17.	6.3	16
116	Three-dimensional N-doped carbon nanotube@carbon foam hybrid: an effective carrier of enzymes for glucose biosensors. RSC Advances, 2017, 7, 26574-26582.	3.6	15
117	The Crystallization Behavior of Poly(<scp>l</scp> -lactic acid)/Poly(<scp>d</scp> -lactic acid) Electrospun Fibers: Effect of Distance of Isomeric Polymers. Industrial & Engineering Chemistry Research, 2020, 59, 8480-8491.	3.7	15
118	Generalized and feasible strategy to prepare ultra-porous, low density, compressible carbon nanoparticle sponges. Carbon, 2019, 154, 363-369.	10.3	14
119	A composite made from palladium nanoparticles and carbon nanofibers for superior electrocatalytic oxidation of formic acid. Mikrochimica Acta, 2014, 181, 797-803.	5.0	13
120	Nanofibre preparation of non-processable polymers by solid-state polymerization of molecularly self-assembled monomers. Nanoscale, 2017, 9, 18169-18174.	5.6	13
121	Facile synthesis of Ni(OH) ₂ nanoplates on nitrogen-doped carbon foam for nonenzymatic glucose sensors. Analytical Methods, 2016, 8, 8227-8233.	2.7	12
122	Effect of trace diphenyl phosphate on mechanical and thermal performance of polyimide composite films. Composites Communications, 2018, 7, 42-46.	6.3	12
123	β-Cyclodextrin toughened polyimide composites toward all-organic dielectric materials. Journal of Materials Science: Materials in Electronics, 2018, 29, 1182-1188.	2.2	12
124	High-Performance Anode Materials with Superior Structure of Fe ₃ O ₄ /FeS/rGO Composite for Lithium Ion Batteries. Nano, 2020, 15, 2050128.	1.0	12
125	Influence of pre-oxidation on mechanical properties of single electrospun polyacrylonitrile nanofiber. Materials Today Communications, 2021, 26, 102069.	1.9	12
126	Carbon Nanofibers Modified Graphite Felt for High Performance Anode in High Substrate Concentration Microbial Fuel Cells. Scientific World Journal, The, 2014, 2014, 1-5.	2.1	11

#	Article	IF	CITATIONS
127	The crystallization and phase transition behaviors of asymmetric PLLA/PDLA blends: From the amorphous state. Polymer Crystallization, 2018, 1, e10006.	0.8	11
128	A Sensitive Pyrimethanil Sensor Based on Electrospun TiC/C Film. Sensors, 2019, 19, 1531.	3.8	11
129	Alkyl Tail Length Dependence of Structures in a Series of Symmetrically Tapered Bisamides Exhibiting Selfâ€Assembled Supramolecular Columnar Phases. Journal of Macromolecular Science - Physics, 2006, 45, 215-229.	1.0	10
130	A novel cyclometalated Iridium(<scp>iii</scp>) complex containing dibenzo-24-crown-8: synthesis, luminescence and application in highly efficient green phosphorescent OLEDs. RSC Advances, 2015, 5, 49466-49470.	3.6	10
131	Facile synthesis, characterization and application of highly active palladium nano-network structures supported on electrospun carbon nanofibers. RSC Advances, 2014, 4, 42732-42736.	3.6	9
132	Highly flexible electrospun carbon/graphite nanofibers from a non-processable heterocyclic rigid-rod polymer of polybisbenzimidazobenzophenanthroline-dione (BBB). Journal of Materials Science, 2018, 53, 9002-9012.	3.7	9
133	Ultralight Heat-Insulating, Electrically Conductive Carbon Fibrous Sponges for Wearable Mechanosensing Devices with Advanced Warming Function. ACS Applied Materials & Interfaces, 2022, 14, 19918-19927.	8.0	9
134	The morphology and growth of PLA stereocomplex in PLLA/PDLA blends with low molecular weights. Polymer Science - Series A, 2017, 59, 116-123.	1.0	8
135	Reactions of Trimethylphosphane-Supported Cobalt Complexes with Salicylaldimines – Formation and Structures of Cobalt Compounds Containing Salicylaldiminato [N:O] Ligands. European Journal of Inorganic Chemistry, 2006, 2006, 4362-4367.	2.0	7
136	Binder-free activated carbon papers for high-performance electric double-layer capacitors. Journal of Solid State Electrochemistry, 2014, 18, 2797-2802.	2.5	7
137	The toughening behavior of PLLA and its asymmetric PLLA/PDLA blends with lower optical purity. Journal of Applied Polymer Science, 2017, 134, .	2.6	7
138	Gradient-Structured Nonflammable Flexible Polymer Membranes. ACS Applied Materials & Interfaces, 2019, 11, 11876-11883.	8.0	6
139	The crystallization behavior of poly(l-lactide)/poly(d-lactide) blends: effect of stirring time during solution mixing. Polymer Bulletin, 2021, 78, 147-163.	3.3	6
140	Synthesis of Dihydrochromeno[2,3- <i>b</i>]indoles <i>via</i> an Fe(OTf) ₃ -Catalyzed Cascade Reaction. Journal of Organic Chemistry, 2021, 86, 16795-16805.	3.2	6
141	Toughening Behavior of Poly(<scp>L</scp> -Lactic Acid)/Poly(<scp>D</scp> -Lactic Acid) Asymmetric Blends. Polymer-Plastics Technology and Engineering, 2018, 57, 1225-1235.	1.9	4
142	Synthesis and properties of BaWO4 nanocrystals prepared using a reverse microemulsion method. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	4
143	High dielectric CsPbBr3/rGO/polyimide composite prepared via in-situ conversion of fillers. Journal of Materials Science: Materials in Electronics, 2021, 32, 12414-12423.	2.2	4
144	A New Catalyst-Free Synthesis of 2,3-Dicarboxylic Ester Quinoline Derivatives. Chinese Journal of Organic Chemistry, 2018, 38, 504.	1.3	4

#	Article	IF	CITATIONS
145	Improving cycle stability of Ni-rich LiNi0.8Mn0.1Co0.1O2 cathode materials by Li4Ti5O12 coating. Ionics, 2022, 28, 1047-1054.	2.4	4
146	The crystallization behavior of poly(ethylene glycol) and poly(<scp>l</scp> â€lactide) block copolymer: Effects of block length of poly(ethylene glycol) and poly(<scp>l</scp> â€lactide). Polymer Crystallization, 2019, 2, e10071.	0.8	3
147	Synthesis and properties of PI composite films using carbon quantum dots as fillers. E-Polymers, 2022, 22, 577-584.	3.0	3
148	A New Strategy to Pretreat Carbon Nanofiber and Its Application in Determination of Dopamine. Journal of Nanomaterials, 2010, 2010, 1-6.	2.7	2
149	Stille crossâ€coupling applied to get higher molecular weight polymers: Synthesis, optoelectronic, <i>V</i> _{oc} properties, and solar cell application. Journal of Applied Polymer Science, 2015, 132, .	2.6	2
150	Synthesis and properties of xLiFePO4·yLi3V2 (PO4)3/carbon microsphere composites as Li-ion battery cathodes. Ionics, 2019, 25, 5717-5723.	2.4	2
151	The isothermal crystallization kinetics of poly(ethylene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 507 Td (gl lengths of PEG and PLLA. CrystEngComm, 2022, 24, 3903-3912.	ycol)- <i>bl 2.6</i>	ock-poly 2
152	Reply to the â€~Comment on "Synthesis and properties of a high dielectric constant copolymer of a copper phthalocyanine oligomer grafted to amino-capped polyimideâ€â€™ by G. Mezei, <i>Journal of Materials Chemistry C</i> , 2019, 7 , DOI: 10.1039/C8TC04076A. Journal of Materials Chemistry C, 2019, 7, 4892-4894.	5.5	0
153	Crystallization Behavior of Homochiral Polymer in Poly(L-lactic acid)/Poly(D-lactic acid) Asymmetric Blends: Effect of Melting States. Polymer Science - Series A, 2021, 63, 267-274.	1.0	0