
Janne Soininen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6502933/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The distance decay of similarity in ecological communities. Ecography, 2007, 30, 3-12.	4.5	829
2	Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshwater Biology, 2015, 60, 845-869.	2.4	717
3	Phylogenetic beta diversity in bacterial assemblages across ecosystems: deterministic versus stochastic processes. ISME Journal, 2013, 7, 1310-1321.	9.8	515
4	A metaâ€analysis of nestedness and turnover components of beta diversity across organisms and ecosystems. Global Ecology and Biogeography, 2018, 27, 96-109.	5.8	306
5	A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels. Ecological Monographs, 2019, 89, e01370.	5.4	290
6	Distance decay of similarity in freshwater communities: do macro―and microorganisms follow the same rules?. Global Ecology and Biogeography, 2012, 21, 365-375.	5.8	281
7	A MULTIVARIATE ANALYSIS OF BETA DIVERSITY ACROSS ORGANISMS AND ENVIRONMENTS. Ecology, 2007, 88, 2830-2838.	3.2	230
8	Are higher taxa adequate surrogates for species-level assemblage patterns and species richness in stream organisms?. Biological Conservation, 2007, 137, 78-89.	4.1	217
9	Benthic diatom communities in boreal streams: community structure in relation to environmental and spatial gradients. Ecography, 2004, 27, 330-342.	4.5	196
10	Nutrient enrichment modifies temperature-biodiversity relationships in large-scale field experiments. Nature Communications, 2016, 7, 13960.	12.8	196
11	Making more out of sparse data: hierarchical modeling of species communities. Ecology, 2011, 92, 289-295.	3.2	195
12	ENVIRONMENTAL AND SPATIAL CONTROL OF FRESHWATER DIATOMS—A REVIEW. Diatom Research, 2007, 22, 473-490.	1.2	184
13	A quantitative analysis of temporal turnover in aquatic species assemblages across ecosystems. Ecology, 2010, 91, 508-517.	3.2	181
14	Context dependency and metacommunity structuring in boreal headwater streams. Oikos, 2012, 121, 537-544.	2.7	159
15	Phylogenetic clustering increases with elevation for microbes. Environmental Microbiology Reports, 2012, 4, 217-226.	2.4	144
16	Contrasting patterns in elevational diversity between microorganisms and macroorganisms. Journal of Biogeography, 2011, 38, 595-603.	3.0	142
17	Geographical patterns of micro-organismal community structure: are diatoms ubiquitously distributed across boreal streams?. Oikos, 2010, 119, 129-137.	2.7	141
18	Global patterns and drivers of species and trait composition in diatoms. Global Ecology and Biogeography, 2016, 25, 940-950.	5.8	139

#	Article	IF	CITATIONS
19	Disentangling the spatial patterns in community composition of prokaryotic and eukaryotic lake plankton. Limnology and Oceanography, 2011, 56, 508-520.	3.1	134
20	A quantitative analysis of species sorting across organisms and ecosystems. Ecology, 2014, 95, 3284-3292.	3.2	134
21	Toward More Integrated Ecosystem Research in Aquatic and Terrestrial Environments. BioScience, 2015, 65, 174-182.	4.9	124
22	Macroecology of unicellular organisms – patterns and processes. Environmental Microbiology Reports, 2012, 4, 10-22.	2.4	119
23	Effects of connectivity, dispersal directionality and functional traits on the metacommunity structure of river benthic diatoms. Journal of Biogeography, 2013, 40, 2238-2248.	3.0	112
24	Metacommunity ecology meets biogeography: effects of geographical region, spatial dynamics and environmental filtering on community structure in aquatic organisms. Oecologia, 2017, 183, 121-137.	2.0	107
25	Warming leads to higher species turnover in a coastal ecosystem. Global Change Biology, 2010, 16, 1181-1193.	9.5	106
26	Distance Decay of Similarity in Neotropical Diatom Communities. PLoS ONE, 2012, 7, e45071.	2.5	105
27	Beta diversity of diatom species and ecological guilds: Response to environmental and spatial mechanisms along the stream watercourse. Freshwater Biology, 2018, 63, 62-73.	2.4	103
28	Neutrality, niches, and determinants of plankton metacommunity structure across boreal wetland ponds. Ecoscience, 2007, 14, 146-154.	1.4	97
29	Patterns of elevational beta diversity in micro―and macroorganisms. Global Ecology and Biogeography, 2012, 21, 743-750.	5.8	97
30	Species Turnover along Abiotic and Biotic Gradients: Patterns in Space Equal Patterns in Time?. BioScience, 2010, 60, 433-439.	4.9	96
31	A global agenda for advancing freshwater biodiversity research. Ecology Letters, 2022, 25, 255-263.	6.4	95
32	Integrating dispersal proxies in ecological and environmental research in the freshwater realm. Environmental Reviews, 2017, 25, 334-349.	4.5	88
33	The three Rs of river ecosystem resilience: Resources, recruitment, and refugia. River Research and Applications, 2019, 35, 107-120.	1.7	86
34	The relationship between species richness and taxonomic distinctness in freshwater organisms. Limnology and Oceanography, 2005, 50, 978-986.	3.1	84
35	Local environment and space drive multiple facets of stream macroinvertebrate beta diversity. Journal of Biogeography, 2018, 45, 2744-2754.	3.0	82
36	Regional and global elevational patterns of microbial species richness and evenness. Ecography, 2017, 40, 393-402.	4.5	79

#	Article	IF	CITATIONS
37	Ecological status of some Finnish rivers evaluated using benthic diatom communities. Journal of Applied Phycology, 2002, 14, 1-7.	2.8	77
38	Spatial structure in ecological communities – a quantitative analysis. Oikos, 2016, 125, 160-166.	2.7	76
39	Dispersal traits drive the phylogenetic distance decay of similarity in Neotropical stream metacommunities. Journal of Biogeography, 2015, 42, 2101-2111.	3.0	72
40	Aphanizomenon gracile (Nostocales), a cylindrospermopsin-producing cyanobacterium in Polish lakes. Environmental Science and Pollution Research, 2013, 20, 5243-5264.	5.3	70
41	A comparative analysis of metacommunity types in the freshwater realm. Ecology and Evolution, 2015, 5, 1525-1537.	1.9	70
42	Regional occupancy in unicellular eukaryotes: a reflection of niche breadth, habitat availability or size-related dispersal capacity?. Freshwater Biology, 2006, 51, 672-685.	2.4	69
43	Seasonal persistence and stability of diatom communities in rivers: are there habitat specific differences?. European Journal of Phycology, 2004, 39, 153-160.	2.0	68
44	Comparative study of monitoring South-Finnish rivers and streams using macroinvertebrate and benthic diatom community structure. Aquatic Ecology, 2004, 38, 63-75.	1.5	68
45	Relationships between local population persistence, local abundance and regional occupancy of species: distribution patterns of diatoms in boreal streams. Journal of Biogeography, 2005, 32, 1971-1978.	3.0	67
46	Stochastic species distributions are driven by organism size. Ecology, 2013, 94, 660-670.	3.2	66
47	Ecological networks of dissolved organic matter and microorganisms under global change. Nature Communications, 2022, 13, .	12.8	66
48	Productivity-Diversity Relationships in Lake Plankton Communities. PLoS ONE, 2011, 6, e22041.	2.5	64
49	A Metacommunity Approach to Improve Biological Assessments in Highly Dynamic Freshwater Ecosystems. BioScience, 2020, 70, 427-438.	4.9	64
50	Are common species sufficient in describing turnover in aquatic metacommunities along environmental and spatial gradients?. Limnology and Oceanography, 2010, 55, 2397-2402.	3.1	63
51	Assembly rules and community models for unicellular organisms: patterns in diatoms of boreal streams. Freshwater Biology, 2005, 50, 567-577.	2.4	60
52	The ecology of the invasive cyanobacteriumCylindrospermopsis raciborskii(Nostocales, Cyanophyta) in two hypereutrophic lakes dominated byPlanktothrix agardhii(Oscillatoriales, Cyanophyta). European Journal of Phycology, 2010, 45, 365-374.	2.0	60
53	Elements of metacommunity structure and communityâ€environment relationships in stream organisms. Freshwater Biology, 2015, 60, 973-988.	2.4	58
54	Understanding environmental change through the lens of trait-based, functional, and phylogenetic biodiversity in freshwater ecosystems. Environmental Reviews, 2019, 27, 263-273.	4.5	57

#	Article	IF	CITATIONS
55	Embracing mountain microbiome and ecosystem functions under global change. New Phytologist, 2022, 234, 1987-2002.	7.3	57
56	Diatom community structure along environmental and spatial gradients in lakes and streams. Fundamental and Applied Limnology, 2009, 174, 205-213.	0.7	53
57	Environmental factors related to the occurrence of <i>Cylindrospermopsis raciborskii</i> (Nostocales, Cyanophyta) at the north-eastern limit of its geographical range. European Journal of Phycology, 2012, 47, 12-21.	2.0	52
58	The relationship between species richness and evenness: a meta-analysis of studies across aquatic ecosystems. Oecologia, 2012, 169, 803-809.	2.0	52
59	Responses of Epilithic Diatom Communities to Environmental Gradients in Some Finnish Rivers. International Review of Hydrobiology, 2002, 87, 11.	0.9	51
60	Community size can affect the signals of ecological drift and niche selection on biodiversity. Ecology, 2020, 101, e03014.	3.2	50
61	The roles of elevation and local environmental factors as drivers of diatom diversity in subarctic streams. Freshwater Biology, 2016, 61, 1509-1521.	2.4	45
62	Variation in stream diatom communities in relation to water quality and catchment variables in a boreal, urbanized region. Science of the Total Environment, 2015, 530-531, 279-289.	8.0	43
63	Fifteen important questions in the spatial ecology of diatoms. Freshwater Biology, 2019, 64, 2071-2083.	2.4	42
64	Surveying biodiversity in protected and managed areas: Algae, macrophytes and macroinvertebrates in boreal forest streams. Ecological Indicators, 2009, 9, 1179-1187.	6.3	41
65	Exotic species invasions undermine regional functional diversity of freshwater fish. Scientific Reports, 2019, 9, 17921.	3.3	41
66	Local environment and connectivity are the main drivers of diatom species composition and trait variation in a set of tropical reservoirs. Freshwater Biology, 2017, 62, 1551-1563.	2.4	40
67	Distance decay 2.0 – A global synthesis of taxonomic and functional turnover in ecological communities. Global Ecology and Biogeography, 2022, 31, 1399-1421.	5.8	40
68	Climate is an important driver for stream diatom distributions. Global Ecology and Biogeography, 2016, 25, 198-206.	5.8	39
69	Subtropical streams harbour higher genus richness and lower abundance of insects compared to boreal streams, but scale matters. Journal of Biogeography, 2018, 45, 1983-1993.	3.0	38
70	Dispersal–niche continuum index: a new quantitative metric for assessing the relative importance of dispersal versus niche processes in community assembly. Ecography, 2021, 44, 370-379.	4.5	38
71	High beta diversity of bacteria in the shallow terrestrial subsurface. Environmental Microbiology, 2008, 10, 2537-2549.	3.8	36
72	Distribution of invasive Cylindrospermopsis raciborskii in the East-Central Europe is driven by climatic and local environmental variables. FEMS Microbiology Ecology, 2017, 93, .	2.7	36

#	Article	IF	CITATIONS
73	Determinants of Benthic Diatom Community Structurein Boreal Streams: the Role of Environmental and Spatial Factors at Different Scales. International Review of Hydrobiology, 2004, 89, 139-150.	0.9	35
74	Disentangling multiâ€scale environmental effects on stream microbial communities. Journal of Biogeography, 2017, 44, 1512-1523.	3.0	34
75	Local and geographical factors jointly drive elevational patterns in three microbial groups across subarctic ponds. Global Ecology and Biogeography, 2017, 26, 973-982.	5.8	34
76	The diversity of benthic diatoms affects ecosystem productivity in heterogeneous coastal environments. Ecology, 2019, 100, e02765.	3.2	34
77	Elevational patterns and hierarchical determinants of biodiversity across microbial taxonomic scales. Molecular Ecology, 2019, 28, 86-99.	3.9	34
78	Pathways for cross-boundary effects of biodiversity on ecosystem functioning. Trends in Ecology and Evolution, 2022, 37, 454-467.	8.7	34
79	Do spatial patterns of benthic diatom assemblages vary across regions and years?. Freshwater Science, 2014, 33, 402-416.	1.8	33
80	The roles of environment and space in shaping stream diatom communities. European Journal of Phycology, 2012, 47, 160-168.	2.0	31
81	ls catchment productivity a useful predictor of taxa richness in lake plankton communities?. Ecological Applications, 2012, 22, 624-633.	3.8	30
82	Diversity patterns of native and exotic fish species suggest homogenization processes, but partly fail to highlight extinction threats. Diversity and Distributions, 2019, 25, 983-994.	4.1	30
83	Temperature drives local contributions to beta diversity in mountain streams: Stochastic and deterministic processes. Global Ecology and Biogeography, 2020, 29, 420-432.	5.8	30
84	The Ecological Characteristics of Idiosyncratic and Nested Diatoms. Protist, 2008, 159, 65-72.	1.5	29
85	Inferring the phosphorus levels of rivers from benthic diatoms using weighted averaging. Fundamental and Applied Limnology, 2002, 154, 1-18.	0.7	29
86	Local–regional diversity relationship varies with spatial scale in lotic diatoms. Journal of Biogeography, 2009, 36, 720-727.	3.0	28
87	Biotic turnover rates during the Pleistocene-Holocene transition. Quaternary Science Reviews, 2016, 151, 100-110.	3.0	28
88	Does catchment geodiversity foster stream biodiversity?. Landscape Ecology, 2019, 34, 2469-2485.	4.2	28
89	Climate mediates continental scale patterns of stream microbial functional diversity. Microbiome, 2020, 8, 92.	11.1	28
90	Variation in Niche Parameters along the Diversity Gradient of Unicellular Eukaryote Assemblages. Protist, 2007, 158, 181-191.	1.5	27

#	Article	IF	CITATIONS
91	Woodland key habitats and stream biodiversity: Does small-scale terrestrial conservation enhance the protection of stream biota?. Biological Conservation, 2014, 170, 10-19.	4.1	27
92	Beta diversity of stream diatoms at two hierarchical spatial scales: implications for biomonitoring. Freshwater Biology, 2016, 61, 239-250.	2.4	27
93	Microbial and Environmental Processes Shape the Link between Organic Matter Functional Traits and Composition. Environmental Science & amp; Technology, 2022, 56, 10504-10516.	10.0	27
94	Diatom βâ€diversity in streams increases with spatial scale and decreases with nutrient enrichment across regional to subâ€continental scales. Journal of Biogeography, 2019, 46, 734-744.	3.0	26
95	Environmental Factors Override Dispersal-Related Factors in Shaping Diatom and Macroinvertebrate Communities Within Stream Networks in China. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	26
96	The distance decay of similarity in ecological communities. Ecography, 2007, 30, 3-12.	4.5	26
97	Latitudinal gradients in niche breadth and position—regional patterns in freshwater fish. Die Naturwissenschaften, 2006, 93, 246-250.	1.6	25
98	Predictability in species distributions: a global analysis across organisms and ecosystems. Global Ecology and Biogeography, 2014, 23, 1264-1274.	5.8	25
99	Assessing the current related heterogeneity and diversity patterns of benthic diatom communities in a turbid and a clear water river. Aquatic Ecology, 2004, 38, 495-501.	1.5	24
100	Relative importance of spatial processes and environmental factors in shaping alpine meadow communities. Journal of Plant Ecology, 2011, 4, 249-258.	2.3	24
101	Taxonomic dependency of beta diversity components in benthic communities of bacteria, diatoms and chironomids along a water-depth gradient. Science of the Total Environment, 2020, 741, 140462.	8.0	23
102	Sampling effort and information quality provided by rare and common species in estimating assemblage structure. Ecological Indicators, 2020, 110, 105937.	6.3	22
103	Diatom Cooccurrence Shows Less Segregation than Predicted from Niche Modeling. PLoS ONE, 2016, 11, e0154581.	2.5	22
104	The application of Uniform Manifold Approximation and Projection (UMAP) for unconstrained ordination and classification of biological indicators in aquatic ecology. Science of the Total Environment, 2022, 815, 152365.	8.0	22
105	Heterogeneity of benthic diatom communities in different spatial scales and current velocities in a turbid river. Archiv Für Hydrobiologie, 2003, 156, 551-564.	1.1	21
106	Unravelling direct and indirect effects of hierarchical factors driving microbial stream communities. Journal of Biogeography, 2017, 44, 2376-2385.	3.0	21
107	Towards understanding the abundance of non-pollen palynomorphs: A comparison of fossil algae, algal pigments and sedaDNA from temperate lake sediments. Review of Palaeobotany and Palynology, 2018, 249, 9-15.	1.5	21
108	Local and regional drivers of taxonomic homogenization in stream communities along a land use gradient. Global Ecology and Biogeography, 2019, 28, 1597-1609.	5.8	21

#	Article	IF	CITATIONS
109	Stream diatom assemblages as environmental indicators – A cross-regional assessment. Ecological Indicators, 2020, 113, 106183.	6.3	21
110	Beta diversity of stream insects differs between boreal and subtropical regions, but land use does not generally cause biotic homogenization. Freshwater Science, 2021, 40, 53-64.	1.8	20
111	Tropical stream diatom communities – The importance of headwater streams for regional diversity. Ecological Indicators, 2018, 95, 183-193.	6.3	19
112	Temporal variation of diatom assemblages in oligotrophic and eutrophic streams. European Journal of Phycology, 2013, 48, 141-151.	2.0	18
113	Phytoplankton richness is related to nutrient availability, not to pool size, in a subarctic rock pool system. Hydrobiologia, 2014, 740, 137-145.	2.0	18
114	Disentangling distance decay of similarity from richness gradients: response to Baselga (2007). Ecography, 2007, 30, 842-844.	4.5	16
115	IS DIATOM DIVERSITY DRIVEN BY PRODUCTIVITY IN BOREAL STREAMS?. Diatom Research, 2009, 24, 197-207.	1.2	16
116	Diatoms: unicellular surrogates for macroalgal community structure in streams?. Biodiversity and Conservation, 2009, 18, 79-89.	2.6	16
117	Analysis of nestedness in freshwater assemblages—patterns across species and trophic levels. Freshwater Science, 2012, 31, 1145-1155.	1.8	16
118	Cell size and acid tolerance constrain pond diatom distributions in the subarctic. Freshwater Biology, 2018, 63, 1569-1578.	2.4	16
119	Downstream transport processes modulate the effects of environmental heterogeneity on riverine phytoplankton. Science of the Total Environment, 2020, 703, 135519.	8.0	16
120	Metacommunity Structure of Stream Insects across Three Hierarchical Spatial scales. Ecology and Evolution, 2020, 10, 2874-2884.	1.9	16
121	IS TEMPORAL OCCURRENCE OF DIATOMS RELATED TO SPECIES TRAITS, LOCAL ABUNDANCE, AND REGIONAL DISTRIBUTION? ¹ . Journal of Phycology, 2011, 47, 1445-1453.	2.3	15
122	The effects of local, buffer zone and geographical variables on lake plankton metacommunities. Hydrobiologia, 2015, 743, 175-188.	2.0	15
123	Temporal variation in community–environment relationships and stream classifications in benthic diatoms: Implications for bioassessment. Limnologica, 2016, 58, 11-19.	1.5	15
124	Ecological processes underlying community assembly of aquatic bacteria and macroinvertebrates under contrasting climates on the Tibetan Plateau. Science of the Total Environment, 2020, 702, 134974.	8.0	15
125	A metacommunity approach for detecting species influenced by mass effect. Journal of Applied Ecology, 2020, 57, 2031-2040.	4.0	15
126	Biogeographical Patterns of Species Richness and Abundance Distribution in Stream Diatoms Are Driven by Climate and Water Chemistry. American Naturalist, 2018, 192, 605-617.	2.1	14

#	Article	IF	CITATIONS
127	Stream diatoms exhibit weak niche conservation along global environmental and climatic gradients. Ecography, 2019, 42, 346-353.	4.5	14
128	Environmental filtering and taxonomic relatedness underlie the species richness–evenness relationship. Hydrobiologia, 2017, 787, 243-253.	2.0	13
129	Assessing the current related heterogeneity and diversity patterns of benthic diatom communities in a turbid and a clear water river. Aquatic Ecology, 2005, 38, 495-501.	1.5	12
130	Regional diatom body size distributions in streams: Does size vary along environmental, spatial and diversity gradients?. Ecoscience, 2006, 13, 271-274.	1.4	12
131	Expanding the ecological niche approach: Relationships between variability in niche position and species richness. Ecological Complexity, 2011, 8, 130-137.	2.9	12
132	Habitat species pools for phylogenetic structure in microbes. Environmental Microbiology Reports, 2013, 5, 464-467.	2.4	12
133	Thermal barriers constrain microbial elevational range size via climate variability. Environmental Microbiology, 2017, 19, 3283-3296.	3.8	12
134	Diversity and distribution across a large environmental and spatial gradient: Evaluating the taxonomic and functional turnover, transitions and environmental drivers of benthic diatom communities. Global Ecology and Biogeography, 2020, 29, 2214-2228.	5.8	12
135	Elements of metacommunity structure of diatoms and macroinvertebrates within stream networks differing in environmental heterogeneity. Journal of Biogeography, 2020, 47, 1755-1764.	3.0	12
136	Anthropogenic land‒use impacts on the size structure of macroinvertebrate assemblages are jointly modulated by local conditions and spatial processes. Environmental Research, 2022, 204, 112055.	7.5	12
137	The scale-dependence of spatial distribution of reservoir plankton communities in subtropical and tropical China. Science of the Total Environment, 2022, 845, 157179.	8.0	12
138	Does traitâ€based joint species distribution modelling reveal the signature of competition in stream macroinvertebrate communities?. Journal of Animal Ecology, 2021, 90, 1276-1287.	2.8	11
139	Phytoplankton community assembly in a large boreal lake - deterministic pathways or chaotic fluctuations?. Freshwater Biology, 2005, 50, 2076-2086.	2.4	10
140	Calibrating aquatic microfossil proxies with regression-tree ensembles: Cross-validation with modern chironomid and diatom data. Holocene, 2016, 26, 1040-1048.	1.7	10
141	Stream diatom assemblages as predictors of climate. Freshwater Biology, 2016, 61, 876-886.	2.4	9
142	Biodiversity Loss Threatens the Current Functional Similarity of Beta Diversity in Benthic Diatom Communities. Microbial Ecology, 2021, 81, 293-303.	2.8	9
143	Differences in diversity and community assemblyÂprocesses between planktonicÂand benthic diatoms in the upper reach of the Jinsha River, China. Hydrobiologia, 2022, 849, 1577-1591.	2.0	9
144	Stable Seasonal and Annual Alpha Diversity of Benthic Diatom Communities Despite Changing Community Composition. Frontiers in Marine Science, 2020, 7, .	2.5	8

#	Article	IF	CITATIONS
145	Snow information is required in subcontinental scale predictions of mountain plant distributions. Global Ecology and Biogeography, 2021, 30, 1502-1513.	5.8	8
146	Distribution patterns of epilithic diatoms along climatic, spatial and physicochemical variables in the Baltic Sea. Helgoland Marine Research, 2017, 71, .	1.3	7
147	New insights into the distribution of alien cyanobacterium <i>Chrysosporum bergii</i> (Nostocales,) Tj ETQq1 1 0	.784314 1.6	rgBT /Overlo
148	High diatom species turnover in a Baltic Sea rock pool metacommunity. Marine Biodiversity, 2019, 49, 2887-2899.	1.0	7
149	Temporal variation in phytoplankton in two lakes with contrasting disturbance regimes. Fundamental and Applied Limnology, 2008, 171, 39-48.	0.7	5
150	Are drivers of microbial diatom distributions context dependent in humanâ€impacted and pristine environments?. Ecological Applications, 2019, 29, e01917.	3.8	5
151	Partial decoupling between exotic fish and habitat constraints remains evident in late invasion stages. Aquatic Sciences, 2020, 82, 1.	1.5	5
152	Clumpy coexistence in phytoplankton: the role of functional similarity in community assembly. Oikos, 2021, 130, 1583-1597.	2.7	5
153	The Effect of Positive Interactions on Temporal Turnover of Community Composition along an Environmental Gradient. PLoS ONE, 2013, 8, e78698.	2.5	4
154	Disentangling the relative roles of natural and anthropogenic-induced stressors in shaping benthic ciliate diversity in a heavily disturbed bay. Science of the Total Environment, 2021, 801, 149683.	8.0	4
155	Observing diatom diversity and community composition along environmental gradients in subarctic mountain ponds. Freshwater Biology, 2022, 67, 731-741.	2.4	4
156	LOCAL AND REGIONAL COEXISTENCE OF DIATOMS—ON THE MECHANISMS PROMOTING HIGH LOCAL DIATOM SPECIES RICHNESS. Diatom Research, 2006, 21, 217-223.	1.2	3
157	Are Bacterio- and Phytoplankton Community Compositions Related in Lakes Differing in Their Cyanobacteria Contribution and Physico-Chemical Properties?. Genes, 2021, 12, 855.	2.4	3
158	Studying biodiversity–ecosystem function relationships in experimental microcosms among islands. Ecology, 2022, , e3664.	3.2	3
159	Altitude and temperature drive anuran community assembly in a Neotropical mountain region. Biotropica, 2022, 54, 607-618.	1.6	3
160	Regional and local environment drive biogeographic patterns in intertidal microorganisms. Journal of Biogeography, 2022, 49, 1576-1585.	3.0	3
161	Cross-taxon congruence of aquatic microbial communities across geological ages in Iceland: Stochastic and deterministic processes. Science of the Total Environment, 2021, 774, 145103.	8.0	2
162	Taxonomic and functional diversity covary in rock pool microalgal communities despite their different drivers. Ecology and Evolution, 2021, 11, 11852-11873.	1.9	2

#	Article	IF	CITATIONS
163	Diatom biogeography in freshwaters – new insights from between-region comparisons and the role of unmeasured environmental factors. Diatom Research, 0, , 1-8.	1.2	2
164	The Diversity of Benthic Diatoms Affects Ecosystem Productivity in Heterogeneous Coastal Environments. Bulletin of the Ecological Society of America, 2019, 100, e01597.	0.2	0