Hartmut H Niemann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6502329/publications.pdf

Version: 2024-02-01

48 papers

1,632 citations

331670 21 h-index 39 g-index

48 all docs 48 docs citations

48 times ranked

2215 citing authors

#	Article	IF	Citations
1	Lethal recessive myelin toxicity of prion protein lacking its central domain. EMBO Journal, 2007, 26, 538-547.	7.8	202
2	Structure of the Human Receptor Tyrosine Kinase Met in Complex with the Listeria Invasion Protein InlB. Cell, 2007, 130, 235-246.	28.9	147
3	Role of \hat{l}^2 -turn residues in \hat{l}^2 -hairpin formation and stability in designed peptides 1 1Edited by A.R. Fersht. Journal of Molecular Biology, 1997, 273, 898-912.	4.2	134
4	Adhesins and invasins of pathogenic bacteria: a structural view. Microbes and Infection, 2004, 6, 101-112.	1.9	102
5	A Helical RGD Motif Promoting Cell Adhesion: Crystal Structures of the Helicobacter pylori Type IV Secretion System Pilus Protein CagL. Structure, 2013, 21, 1931-1941.	3.3	70
6	Structure of the Yersinia enterocolitica Type III Secretion Translocator Chaperone SycD. Journal of Molecular Biology, 2008, 375, 997-1012.	4.2	63
7	The nuclear distribution of Polycomb during Drosophila melanogaster development shown with a GFP fusion protein. Chromosoma, 1999, 108, 83-94.	2.2	62
8	A flavin-dependent halogenase from metagenomic analysis prefers bromination over chlorination. PLoS ONE, 2018, 13, e0196797.	2.5	57
9	Cdc42 and Phosphoinositide 3-Kinase Drive Rac-Mediated Actin Polymerization Downstream of c-Met in Distinct and Common Pathways. Molecular and Cellular Biology, 2007, 27, 6615-6628.	2.3	47
10	Single-molecule photobleaching reveals increased MET receptor dimerization upon ligand binding in intact cells. BMC Biophysics, 2013, 6, 6.	4.4	47
11	Structure-based switch of regioselectivity in the flavin-dependent tryptophan 6-halogenase Thal. Journal of Biological Chemistry, 2019, 294, 2529-2542.	3.4	46
12	The dynamin A ring complex: molecular organization and nucleotide-dependent conformational changes. EMBO Journal, 2002, 21, 240-250.	7.8	43
13	Aromatic amino acids at the surface of InlB are essential for host cell invasion by Listeria monocytogenes. Molecular Microbiology, 2003, 48, 1525-1536.	2.5	43
14	Ligand-Mediated Dimerization of the Met Receptor Tyrosine Kinase by the Bacterial Invasion Protein InlB. Journal of Molecular Biology, 2010, 395, 522-532.	4.2	43
15	Fold and Function of the InlB B-repeat. Journal of Biological Chemistry, 2011, 286, 15496-15506.	3.4	38
16	X-ray and Neutron Small-Angle Scattering Analysis of the Complex Formed by the Met Receptor and the Listeria monocytogenes Invasion Protein InlB. Journal of Molecular Biology, 2008, 377, 489-500.	4.2	34
17	Structural insights into Met receptor activation. European Journal of Cell Biology, 2011, 90, 972-981.	3.6	31
18	Crystal structure of Yersinia enterocoliticatype III secretion chaperone SycT. Protein Science, 2005, 14, 1993-2002.	7.6	30

#	Article	IF	CITATIONS
19	Receptor–Ligand Interactions: Binding Affinities Studied by Singleâ€Molecule and Superâ€Resolution Microscopy on Intact Cells. ChemPhysChem, 2014, 15, 671-676.	2.1	28
20	Adhesion of Several Cell Lines to Helicobacter pylori CagL Is Mediated by Integrin $\hat{l}\pm V\hat{l}^26$ via an RGDLXXL Motif. Journal of Molecular Biology, 2015, 427, 1304-1315.	4.2	27
21	Crystal structure of the Yersinia enterocolitica type III secretion chaperone SycD in complex with a peptide of the minor translocator YopD. BMC Structural Biology, 2012, 12, 13.	2.3	23
22	Competitive Binding Study Revealing the Influence of Fluorophore Labels on Biomolecular Interactions. Nano Letters, 2019, 19, 8245-8249.	9.1	23
23	Structural basis of MET receptor dimerization by the bacterial invasion protein InlB and the HGF/SF splice variant NK1. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 2195-2204.	2.3	22
24	Binding of FAD and tryptophan to the tryptophan 6â€halogenase Thal is negatively coupled. Protein Science, 2019, 28, 2112-2118.	7.6	21
25	Inhibition of the MET Kinase Activity and Cell Growth in MET-Addicted Cancer Cells by Bi-Paratopic Linking. Journal of Molecular Biology, 2019, 431, 2020-2039.	4.2	20
26	The unusual extended C-terminal helix of the peroxisomal $\hat{l} \pm / \hat{l}^2$ -hydrolase Lpx1 is involved in dimer contacts but dispensable for dimerization. Journal of Structural Biology, 2011, 175, 362-371.	2.8	19
27	Structure of a three-dimensional domain-swapped dimer of the <i>Helicobacter pylori </i> type IV secretion system pilus protein CagL. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 1391-1400.	2.5	19
28	Structure of <i>Rhodococcus equi </i> virulence-associated protein B (VapB) reveals an eight-stranded antiparallel \hat{l}^2 -barrel consisting of two Greek-key motifs. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 866-871.	0.8	17
29	Live cell imaging shows hepatocyte growth factor-induced Met dimerization. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1552-1558.	4.1	17
30	Direct binding of hepatocyte growth factor and vascular endothelial growth factor to CD44v6. Bioscience Reports, 2015, 35, .	2.4	16
31	Specific high affinity interaction of <i>HelicobacterÂpylori</i> CagL with integrin \hat{l}_{\pm} _V \hat{l}_{\pm} _{\hat{l}_{\pm}_V\hat{l}_{\pm}}	4.7	16
32	Barnase Fusion as a Tool to Determine the Crystal Structure of the Small Disulfide-rich Protein McoEeTI. Journal of Molecular Biology, 2006, 356, 1-8.	4.2	15
33	Membrane dynamics of resting and internalin Bâ€bound <scp>MET</scp> receptor tyrosine kinase studied by singleâ€molecule tracking. FEBS Open Bio, 2017, 7, 1422-1440.	2.3	15
34	Structure of Halorhodopsin from Halobacterium salinarum in a new crystal form that imposes little restraint on the E–F loop. Journal of Structural Biology, 2015, 190, 373-378.	2.8	14
35	Crystal structure of an engineered YopM-InlB hybrid protein. BMC Structural Biology, 2014, 14, 12.	2.3	11
36	Engineered variants of InlB with an additional leucineâ€rich repeat discriminate between physiologically relevant and packing contacts in crystal structures of the InlB:MET complex. Protein Science, 2012, 21, 1528-1539.	7.6	9

#	Article	IF	CITATIONS
37	Direct interaction of a chaperone-bound type III secretion substrate with the export gate. Nature Communications, 2022, 13, .	12.8	9
38	Microdeletions within the hydrophobic core region of cellular prion protein alter its topology and metabolism. Biochemical and Biophysical Research Communications, 2010, 393, 439-444.	2.1	8
39	MET-activating Residues in the B-repeat of the Listeria monocytogenes Invasion Protein InlB. Journal of Biological Chemistry, 2016, 291, 25567-25577.	3.4	8
40	Distinguishing Between Monomeric scFv and Diabody in Solution Using Light and Small Angle X-ray Scattering. Antibodies, 2019, 8, 48.	2.5	7
41	Structural Characterization of an S-enantioselective Imine Reductase from Mycobacterium Smegmatis. Biomolecules, 2020, 10, 1130.	4.0	7
42	Structure of apo flavin-dependent halogenase Xcc4156 hints at a reason for cofactor-soaking difficulties. Acta Crystallographica Section D: Structural Biology, 2020, 76, 687-697.	2.3	6
43	The Formation of New Nucleoli During Macronuclear Development of the Hypotrichous Ciliate Stylonychia lemnae Visualized by in situ Hybridization. Chromosome Research, 1997, 5, 333-335.	2.2	5
44	Crystal structure of <i> Halobacterium salinarum </i> halorhodopsin with a partially depopulated primary chloride-binding site. Acta Crystallographica Section F, Structural Biology Communications, 2016, 72, 692-699.	0.8	5
45	Conformational changes of loops highlight a potential binding site in <i>Rhodococcus equi</i> VapB. Acta Crystallographica Section F, Structural Biology Communications, 2021, 77, 246-253.	0.8	3
46	Perfect merohedral twinning combined with noncrystallographic symmetry potentially causes the failure of molecular replacement with low-homology search models for the flavin-dependent halogenase HalX from Xanthomonas campestris. Acta Crystallographica Section F, Structural Biology Communications, 2018, 74, 345-350.	0.8	1
47	Not Cleaving the His-tag of Thal Results in More Tightly Packed and Better-Diffracting Crystals. Crystals, 2020, 10, 1135.	2.2	1
48	A recurring packing contact in crystals of InlB pinpoints functional binding sites in the internalin domain and the B repeat. Acta Crystallographica Section D: Structural Biology, 2022, 78, 310-320.	2.3	1