Anna V Rodina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6502222/publications.pdf

Version: 2024-02-01

84 papers 5,015 citations

30 h-index 70 g-index

85 all docs

85 docs citations

85 times ranked 4545 citing authors

#	Article	IF	CITATIONS
1	General Expression for the Size-Dependent Optical Properties of Quantum Dots. Nano Letters, 2022, 22, 1778-1785.	9.1	30
2	Comment on "Size Dependent Optical Properties and Structure of ZnS Nanocrystals Prepared from a Library of Thioureas― Chemistry of Materials, 2022, 34, 6182-6184.	6.7	1
3	Polarized emission of CdSe nanocrystals in magnetic field: the role of phonon-assisted recombination of the dark exciton. Nanoscale, 2021, 13, 790-800.	5.6	10
4	Influence of the spin-orbit split-off valence band on the hole <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>g</mml:mi></mml:math> factor in semiconductor nanocrystals. Physical Review B, 2021, 104, .	3.2	11
5	Mid-infrared irradiation keeps nanocrystals bright. Nature Nanotechnology, 2021, 16, 1304-1305.	31.5	o
6	Single and Double Electron Spin-Flip Raman Scattering in CdSe Colloidal Nanoplatelets. Nano Letters, 2020, 20, 517-525.	9.1	21
7	Temperature activation of indirect exciton in nanostructures based on MoS ₂ . Journal of Physics: Conference Series, 2020, 1482, 012038.	0.4	6
8	Surface spin magnetism controls the polarized exciton emission from CdSe nanoplatelets. Nature Nanotechnology, 2020, 15, 277-282.	31.5	32
9	Theory of single and double electron spin-flip Raman scattering in semiconductor nanoplatelets. Physical Review B, 2020, 102, .	3.2	6
10	Magnetic circular polarization of photoluminescence of an inhomogeneous ensemble of colloidal nanocrystals. Journal of Physics: Conference Series, 2020, 1697, 012204.	0.4	0
11	Localization of Carriers in Quantum Dots with Uniaxial Anisotropy of Shape and Composition. Physics of the Solid State, 2019, 61, 506-514.	0.6	0
12	Electronic energy band parameters of CulnSe2 : Landau levels in magnetotransmission spectra. Physical Review B, 2019, 100, .	3.2	1
13	Dangling Bond Spins Controlling Recombination Dynamics of Excitons in Colloidal Nanocrystals and Nanoplatelets. Semiconductors, 2018, 52, 572-574.	0.5	6
14	Biexciton Binding Energy in Spherical Quantum Dots with Γ8 Valence Band. Semiconductors, 2018, 52, 554-557.	0.5	0
15	Effect of Dangling Bond Spins on the Dark Exciton Recombination and Spin Polarization in CdSe Colloidal Nanostructures. Journal of Electronic Materials, 2018, 47, 4338-4344.	2.2	5
16	Photocharging Dynamics in Colloidal CdS Quantum Dots Visualized by Electron Spin Coherence. Semiconductors, 2018, 52, 548-550.	0.5	0
17	Spin Dynamics of Charged and Neutral Excitons in Colloidal Nanocrystals. Journal of Electronic Materials, 2018, 47, 4260-4271.	2.2	3
18	Addressing the exciton fine structure in colloidal nanocrystals: the case of CdSe nanoplatelets. Nanoscale, 2018, 10, 646-656.	5.6	89

#	Article	IF	Citations
19	Electron and Hole $\langle i \rangle g \langle i \rangle$ -Factors and Spin Dynamics of Negatively Charged Excitons in CdSe/CdS Colloidal Nanoplatelets with Thick Shells. Nano Letters, 2018, 18, 373-380.	9.1	50
20	Förster Energy Transfer in Arrays of Epitaxial CdSe/ZnSe Quantum Dots Involving Bright and Dark Excitons. Physics of the Solid State, 2018, 60, 1590-1594.	0.6	3
21	Spin Physics of Excitons in Colloidal Nanocrystals. Physics of the Solid State, 2018, 60, 1537-1553.	0.6	10
22	Excitons and Biexcitons in Spheroidal Quantum Dots A2B6. Physics of the Solid State, 2018, 60, 1510-1513.	0.6	2
23	Third harmonic generation on exciton-polaritons in bulk semiconductors subject to a magnetic field. Physical Review B, 2018, 98, .	3.2	9
24	Exciton Spectroscopy of Semiconductors by the Method of Optical Harmonics Generation (Review). Physics of the Solid State, 2018, 60, 1471-1486.	0.6	17
25	Biexciton in Il–VI quantum dots with different localization potentials. Physics of the Solid State, 2017, 59, 1215-1224.	0.6	3
26	Dynamic Evolution from Negative to Positive Photocharging in Colloidal CdS Quantum Dots. Nano Letters, 2017, 17, 2844-2851.	9.1	32
27	Magnetic polaron on dangling-bond spins in CdSe colloidal nanocrystals. Nature Nanotechnology, 2017, 12, 569-574.	31.5	44
28	Suppression of slow decaying emission in II-VI quantum dots with Förster resonance energy transfer. Journal of Physics: Conference Series, 2017, 917, 062048.	0.4	1
29	Förster Resonance Energy Transfer and Harvesting in Il–VI Fractional Monolayer Structures. Journal of Electronic Materials, 2017, 46, 3922-3926.	2.2	4
30	Switching of resonance energy transfer mechanism in a dense array of II-VI quantum dots. Journal of Physics: Conference Series, 2016, 741, 012155.	0.4	1
31	Resonance energy transfer in a dense array of Il–VI quantum dots. Physics of the Solid State, 2016, 58, 2256-2260.	0.6	2
32	Effect of dielectric confinement on optical properties of colloidal nanostructures. Journal of Experimental and Theoretical Physics, 2016, 122, 554-566.	0.9	40
33	Ground state of the holes localized in II-VI quantum dots with Gaussian potential profiles. Physical Review B, 2016, 93, .	3.2	22
34	Radiative recombination from dark excitons in nanocrystals: Activation mechanisms and polarization properties. Physical Review B, 2016, 93, .	3.2	32
35	Nonradiative and radiative FÃ \P rster energy transfer between quantum dots. Journal of Experimental and Theoretical Physics, 2016, 122, 531-538.	0.9	22
36	Spectral selection of excitonic transitions in a dense array of CdSe/ZnSe quantum dots. Physica Status Solidi (B): Basic Research, 2016, 253, 1485-1489.	1.5	12

#	Article	IF	CITATIONS
37	Biexciton Auger Recombination in CdSe/CdS Core/Shell Semiconductor Nanocrystals. Nano Letters, 2016, 16, 2503-2511.	9.1	71
38	Density of States and Photoluminescence Spectra in the Dense Arrays of Epitaxial CdSe/ZnSe Quantum Dots with Gaussian Potential Profile. Acta Physica Polonica A, 2016, 129, A-107-A-110.	0.5	8
39	$F ilde{A}\P$ rster energy transfer of dark excitons enhanced by a magnetic field in an ensemble of CdTe colloidal nanocrystals. Physical Review B, 2015, 92, .	3.2	16
40	Electric field effect on optical harmonic generation at the exciton resonances in GaAs. Physical Review B, 2015, 92, .	3.2	23
41	Exciton spin dynamics and photoluminescence polarization of CdSe/CdS dot-in-rod nanocrystals in high magnetic fields. Physical Review B, 2015, 91, .	3.2	29
42	Nonradiative Auger Recombination in Semiconductor Nanocrystals. Nano Letters, 2015, 15, 2092-2098.	9.1	62
43	Novel mechanisms of optical harmonic generation on excitons in semiconductors. , 2015, , .		1
44	Magnetic Properties of Nonmagnetic Nanostructures: Dangling Bond Magnetic Polaron in CdSe Nanocrystals. Nano Letters, 2015, 15, 4214-4222.	9.1	36
45	Dynamics of Intraband and Interband Auger Processes in Colloidal Core–Shell Quantum Dots. ACS Nano, 2015, 9, 10366-10376.	14.6	52
46	Suris Tetrons: Possible Spectroscopic Evidence for Four-Particle Optical Excitations of a Two-Dimensional Electron Gas. Physical Review Letters, 2014, 112, 147402.	7.8	22
47	Landau levels of the C-exciton in CulnSe2 studied by magneto-transmission. Applied Physics Letters, 2014, 105, .	3.3	4
48	Exciton spin dynamics of colloidal CdTe nanocrystals in magnetic fields. Physical Review B, 2014, 89, .	3.2	15
49	Effects of strain on the valence band structure and exciton-polariton energies in ZnO. Physical Review B, 2013, 88, .	3.2	42
50	Second-harmonic generation spectroscopy of excitons in ZnO. Physical Review B, 2013, 88, .	3.2	58
51	The role of polarization fields in Auger-induced efficiency droop in nitride-based light-emitting diodes. Applied Physics Letters, 2013, 103, .	3.3	46
52	Spin dynamics of negatively charged excitons in CdSe/CdS colloidal nanocrystals. Physical Review B, 2013, 88, .	3.2	64
53	Magneto-Stark Effect of Excitons as the Origin of Second Harmonic Generation in ZnO. Physical Review Letters, 2013, 110, 116402.	7.8	27
54	Thermal activation of non-radiative Auger recombination in charged colloidal nanocrystals. Nature Nanotechnology, 2013, 8, 206-212.	31.5	219

#	Article	IF	CITATIONS
55	Fine structure of the band-edge excitons and trions in CdSe/CdS core/shell nanocrystals. Physical Review B, 2012, 86, .	3.2	45
56	Anisotropy of effective masses in CulnSe2. Applied Physics Letters, 2012, 101, .	3.3	14
57	Bound excitons in ZnO: Structural defect complexes versus shallow impurity centers. Physical Review B, 2011, 84, .	3.2	157
58	Exchange Interaction Between Carriers and Magnetic Ions in Quantum Size Heterostructures. Springer Series in Materials Science, 2010, , 65-101.	0.6	5
59	Band-edge biexciton in nanocrystals of semiconductors with a degenerate valence band. Physical Review B, 2010, 82, .	3.2	30
60	<mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>\timeimml:mi><mml:mn>7</mml:mn></mml:mi></mml:msub></mml:mrow></mml:math>	ow>. <td>l:math>valen</td>	l:math>valen
61	Theory of intrinsic electric polarization and spin Hall current in spin-orbit-coupled semiconductor heterostructures. Physical Review B, 2008, 78, .	3.2	5
62	Least-action principle for envelope functions in abrupt heterostructures. Physical Review B, 2006, 73, .	3.2	12
63	Field-enhanced ionization of deep-level centers as a triggering mechanism for superfast impact ionization fronts in Si structures. Journal of Applied Physics, 2005, 98, 094506.	2.5	35
64	Bound exciton and donor–acceptor pair recombinations in ZnO. Physica Status Solidi (B): Basic Research, 2004, 241, 231-260.	1.5	1,499
65	Identification of bound exciton complexes in ZnO. Physica Status Solidi (B): Basic Research, 2004, 241, 607-611.	1.5	41
66	Magneto-optical properties of bound excitons in ZnO. Physical Review B, 2004, 69, .	3.2	61
67	Effect of the surface on the electron quantum size levels and electrongfactor in spherical semiconductor nanocrystals. Physical Review B, 2003, 67, .	3.2	51
68	Valence-band ordering and magneto-optic exciton fine structure in ZnO. Physical Review B, 2002, 65, .	3.2	241
69	General boundary conditions for the envelope function in the multibandkâ«pmodel. Physical Review B, 2002, 65, .	3.2	61
70	Theory of the Zeeman effect in semiconductor nanocrystals. Materials Science and Engineering C, 2002, 19, 435-438.	7.3	21
71	Spin dynamics in semiconductor nanocrystals. Physical Review B, 2002, 66, .	3.2	149
72	Free excitons in wurtzite GaN. Physical Review B, 2001, 64, .	3.2	161

#	Article	IF	CITATIONS
73	Anisotropy of conduction bandgvalues and interband momentum matrix elements in wurtzite GaN. Physical Review B, 2001, 64, .	3.2	26
74	Weak- and strong-field magnetooptics of wurtzite CdSe: parameters of quasi-cubic approximation. Journal of Crystal Growth, 2000, 214-215, 899-903.	1.5	5
75	Magnetic absorption of hexagonal crystals CdSe in strong and weak fields: Quasi-cubic approximation. Physics of the Solid State, 2000, 42, 1242-1252.	0.6	8
76	Exciton Energy Structure in Wurtzite GaN. Physica Status Solidi (B): Basic Research, 1999, 216, 21-26.	1.5	14
77	Ground-state characteristics of an acceptor center in wide-gap semiconductors with a weak spin-orbit coupling. Physics of the Solid State, 1998, 40, 917-923.	0.6	22
78	Effective Mass Calculation of the Shallow Acceptor Ground State g-Factor for A3B5 Semiconductors. Physica Status Solidi (B): Basic Research, 1998, 210, 865-868.	1.5	7
79	Theory of acceptor-ground-state description and hot photoluminescence in cubic semiconductors. Physical Review B, 1997, 55, 4388-4399.	3.2	8
80	Absorption and intensity-dependent photoluminescence measurements on CdSe quantum dots: assignment of the first electronic transitions: erratum. Journal of the Optical Society of America B: Optical Physics, 1994, 11, 524.	2.1	7
81	A+â€" center and exciton bound to neutral acceptor in diamond-like semiconductors. Solid State Communications, 1993, 85, 23-28.	1.9	5
82	Absorption and intensity-dependent photoluminescence measurements on CdSe quantum dots: assignment of the first electronic transitions. Journal of the Optical Society of America B: Optical Physics, 1993, 10, 100.	2.1	723
83	Band-edge absorption and luminescence of nonspherical nanometer-size crystals. Physical Review B, 1993, 47, 10005-10007.	3.2	128
84	Confined excitons, trions and biexcitons in semiconductor microcrystals. Solid State Communications, 1989, 72, 645-649.	1.9	104