Alessandra Puglisi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6502210/publications.pdf Version: 2024-02-01

4.8

45

#	Article	IF	CITATIONS
1	Polymer-Supported Organic Catalysts. Chemical Reviews, 2003, 103, 3401-3430.	47.7	743
2	Flow Chemistry: Recent Developments in the Synthesis of Pharmaceutical Products. Organic Process Research and Development, 2016, 20, 2-25.	2.7	674
3	Poly(Ethylene Glycol)-Supported Proline: A Versatile Catalyst for the Enantioselective Aldol and Iminoaldol Reactions. Advanced Synthesis and Catalysis, 2002, 344, 533.	4.3	193
4	Stereoselective organic reactions promoted by immobilized chiral catalysts in continuous flow systems. Green Chemistry, 2013, 15, 1790.	9.0	132
5	Pebbles and PebbleJuggler: software for accurate, unbiased, and fast measurement and analysis of nanoparticle morphology from transmission electron microscopy (TEM) micrographs. Nanoscale, 2012, 4, 5356.	5.6	130
6	Poly(ethylene glycol)-Supported Chiral Imidazolidin-4-one: An Efficient Organic Catalyst for the Enantioselective Diels–Alder Cycloaddition. Advanced Synthesis and Catalysis, 2002, 344, 149.	4.3	101
7	Additive Manufacturing Technologies: 3D Printing in Organic Synthesis. ChemCatChem, 2018, 10, 1512-1525.	3.7	90
8	Enantioselective 1,3-Dipolar Cycloadditions of Unsaturated Aldehydes Promoted by A Poly(ethylene) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
9	A chiral organocatalytic polymer-based monolithic reactor. Green Chemistry, 2014, 16, 2798.	9.0	76
10	Aerobic oxidation of alcohols to carbonyl compounds mediated by poly(ethylene glycol)-supported TEMPO radicals. Tetrahedron, 2005, 61, 12058-12064.	1.9	73
11	Stereoselective Catalytic Synthesis of Active Pharmaceutical Ingredients in Homemade 3Dâ€Printed Mesoreactors. Angewandte Chemie - International Edition, 2017, 56, 4290-4294.	13.8	72
12	A multifunctional proline-based organic catalyst for enantioselective aldol reactions. Tetrahedron: Asymmetry, 2006, 17, 2754-2760.	1.8	64
13	Monodisperse Octahedral α-MnS and MnO Nanoparticles by the Decomposition of Manganese Oleate in the Presence of Sulfur. Chemistry of Materials, 2010, 22, 2804-2813.	6.7	62
14	Enantioselective Synthesis of Cyclic Enol Ethers and All-Carbon Quaternary Stereogenic Centers Through Catalytic Asymmetric Ring-Closing Metathesis. Journal of the American Chemical Society, 2006, 128, 5153-5157.	13.7	61
15	Continuous-Flow Stereoselective Organocatalyzed Diels–Alder Reactions in a Chiral Catalytic "Homemade―HPLC Column. Organic Letters, 2013, 15, 3590-3593.	4.6	54
16	Synthesis of Alphaâ€ŧrifluoromethylthio Carbonyl Compounds: A Survey of the Methods for the Direct Introduction of the SCF ₃ Group on to Organic Molecules. ChemCatChem, 2018, 10, 2717-2733.	3.7	52
17	Solid Supported 9â€Aminoâ€9â€deoxyâ€ <i>epi</i> â€quinine as Efficient Organocatalyst for Stereoselective Reactions in Batch and Under Continuous Flow Conditions. Advanced Synthesis and Catalysis, 2015, 357, 377-383.	4.3	47

¹⁸ Poly(ethylene-glycol)-supported proline: a recyclable aminocatalyst for the enantioselective synthesis of Î³-nitroketones by conjugate addition. Journal of Molecular Catalysis A, 2003, 204-205, 157-163.

#	Article	IF	CITATIONS
19	Hybrid Inorganicâ€Organic Materials Carrying Tertiary Amine and Thiourea Residues Tethered on Mesoporous Silica Nanoparticles: Synthesis, Characterization, and Coâ€Operative Catalysis. Advanced Synthesis and Catalysis, 2009, 351, 219-229.	4.3	44
20	Towards the development of continuous, organocatalytic, and stereoselective reactions in deep eutectic solvents. Beilstein Journal of Organic Chemistry, 2016, 12, 2620-2626.	2.2	44
21	Enantiomerically pure phenanthroline or bipyridine containing macrocycles: a new class of ligands for asymmetric catalysis. Tetrahedron Letters, 2003, 44, 2947-2951.	1.4	41
22	Enantioselective catalytic addition of nitroesters to N-carboalkyloxy imines: a route to quaternary stereocenters. Tetrahedron Letters, 2009, 50, 4340-4342.	1.4	36
23	Chiral Hybrid Inorganic–Organic Materials: Synthesis, Characterization, and Application in Stereoselective Organocatalytic Cycloadditions. Journal of Organic Chemistry, 2013, 78, 11326-11334.	3.2	35
24	Enantioselective Organocatalysis in Microreactors: Continuous Flow Synthesis of a (S)-Pregabalin Precursor and (S)-Warfarin. Symmetry, 2015, 7, 1395-1409.	2.2	34
25	Solid Supported Chiral <i>N</i> â€Picolylimidazolidinones: Recyclable Catalysts for the Enantioselective, Metal―and Hydrogenâ€Free Reduction of Imines in Batch and in Flow Mode. Advanced Synthesis and Catalysis, 2017, 359, 2375-2382.	4.3	34
26	Novel carbohydrate-based bifunctional organocatalysts for nucleophilic addition to nitroolefins and imines. Organic and Biomolecular Chemistry, 2011, 9, 3295.	2.8	32
27	Efficient and highly stereoselective synthesis of a β-Lactam inhibitor of the serine protease prostate-specific antigen. Bioorganic and Medicinal Chemistry, 2002, 10, 1813-1818.	3.0	31
28	Comparison of Different Polymer―and Silicaâ€Supported 9â€Aminoâ€9â€deoxyâ€ <i>epi</i> â€quinines as Recy Organocatalysts. ChemCatChem, 2015, 7, 1490-1499.	cląble 3.7	30
29	A Catalytic Reactor for the Organocatalyzed Enantioselective Continuous Flow Alkylation of Aldehydes. ChemSusChem, 2014, 7, 3534-3540.	6.8	28
30	Organocatalysis Chemistry in Flow. Current Organocatalysis, 2015, 2, 79-101.	0.5	28
31	Palladium-Catalyzed Synthesis of Nonsymmetrically Functionalized Bipyridines, Poly(bipyridines) and Terpyridines. European Journal of Organic Chemistry, 2003, 2003, 1552-1558.	2.4	27
32	Stereoselective DielsAlder Reactions Promoted under Continuousâ€Flow Conditions by Silica‧upported Chiral Organocatalysts. Israel Journal of Chemistry, 2014, 54, 381-394.	2.3	27
33	Stereoselective Catalytic Synthesis of Active Pharmaceutical Ingredients in Homemade 3Dâ€Printed Mesoreactors. Angewandte Chemie, 2017, 129, 4354-4358.	2.0	27
34	Operationally Simple, Efficient, and Diastereoselective Synthesis ofcis-2,6-Disubstituted-4-Methylene Tetrahydropyrans Catalyzed by Triflic Acid. Organic Letters, 2006, 8, 1871-1874.	4.6	26
35	Efficient Synthesis of an Enantiopure β-Lactam as an Advanced Precursor of Thrombin and Tryptase Inhibitors. Journal of Organic Chemistry, 2003, 68, 2952-2955.	3.2	23
36	Colloidal stability of iron oxide nanocrystals coated with a PEG-based tetra-catechol surfactant. Nanotechnology, 2013, 24, 105702.	2.6	23

Alessandra Puglisi

#	Article	IF	CITATIONS
37	Stereoselective nucleophilic addition to imines catalyzed by chiral bifunctional thiourea organocatalysts. Tetrahedron: Asymmetry, 2008, 19, 2258-2264.	1.8	22
38	Continuous-Flow Stereoselective Synthesis in Microreactors: Nucleophilic Additions to Nitrostyrenes Organocatalyzed by a Chiral Bifunctional Catalyst. Journal of Flow Chemistry, 2015, 5, 17-21.	1.9	21
39	Stereolithography 3D-Printed Catalytically Active Devices in Organic Synthesis. Catalysts, 2020, 10, 109.	3.5	20
40	Immobilization of Chiral Bifunctional Organocatalysts on Poly(methylhydrosiloxane). ChemCatChem, 2012, 4, 972-975.	3.7	18
41	Stereoselective Reduction of Imines with Trichlorosilane Using Solid-Supported Chiral Picolinamides. Molecules, 2016, 21, 1182.	3.8	17
42	Continuous-flow synthesis of primary amines: Metal-free reduction of aliphatic and aromatic nitro derivatives with trichlorosilane. Beilstein Journal of Organic Chemistry, 2016, 12, 2614-2619.	2.2	17
43	Solvent-Free, One-Pot Synthesis of β-Lactams by the Sc(OTf)3-Catalyzed Reaction of Silyl Ketene Thiocetals with Imines. European Journal of Organic Chemistry, 2007, 2007, 2865-2869.	2.4	15
44	Magnetic nanoparticles conjugated to chiral imidazolidinone as recoverable catalyst. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	14
45	Synthesis in mesoreactors: Ru(porphyrin)CO-catalyzed aziridination of olefins under continuous flow conditions. Catalysis Science and Technology, 2016, 6, 4700-4704.	4.1	14
46	From anilines to aziridines: A two-step synthesis under continuous-flow conditions. Journal of Flow Chemistry, 2016, 6, 234-239.	1.9	12
47	Eosin Y: Homogeneous Photocatalytic In-Flow Reactions and Solid-Supported Catalysts for In-Batch Synthetic Transformations. Applied Sciences (Switzerland), 2020, 10, 5596.	2.5	12
48	Enantioselective Organophotocatalytic Telescoped Synthesis of a Chiral Privileged Active Pharmaceutical Ingredient. Chemistry - A European Journal, 2022, 28, .	3.3	12
49	3D-printed, home-made, UV-LED photoreactor as a simple and economic tool to perform photochemical reactions in high school laboratories. Chemistry Teacher International, 2020, 2, .	1.7	11
50	Stereoselective Visible‣ight Catalyzed Cyclization of Bis(enones): A Viable Approach to the Synthesis of Enantiomerically Enriched Cyclopentane Rings. European Journal of Organic Chemistry, 2021, 2021, 4521-4524.	2.4	11
51	PEG-supported pyridylthioesters for racemization-free amide synthesis: a reagent that allows simultaneous product formation and removal from the polymer. Tetrahedron, 2005, 61, 12100-12106.	1.9	9
52	Sequential Stereoselective Catalysis: Two Single-Flask Reactions of a Substrate in the Presence of a Bifunctional Chiral Ligand and Different Transition Metals. European Journal of Organic Chemistry, 2003, 2003, 1428-1432.	2.4	6
53	Catalysis in water: Synthesis of β-amino amides by Sc(III) promoted condensation of silylketene pyridylthioacetal and imines. Journal of Organometallic Chemistry, 2007, 692, 5795-5798.	1.8	6
54	Metal-porphyrin catalyzed aziridination of α-methylstyrene: Batch vs. flow process. Journal of Porphyrins and Phthalocyanines, 2017, 21, 381-390.	0.8	6

Alessandra Puglisi

#	Article	IF	CITATIONS
55	Evaluation of In-Batch and In-Flow Synthetic Strategies towards the Stereoselective Synthesis of a Fluorinated Analogue of Retro-Thiorphan. Molecules, 2019, 24, 2260.	3.8	5
56	Isophthalic Acid–Derived Dicarbothioamides as Novel Metal-Free Catalysts in Hydrogen Bond–Promoted Reactions. Synthetic Communications, 2009, 39, 3731-3742.	2.1	4
57	A Continuous-Flow, Two-Step, Metal-Free Process for the Synthesis of Differently Substituted Chiral 1,2-Diamino Derivatives. Synthesis, 2018, 50, 1430-1438.	2.3	4
58	Nitroalkene reduction in deep eutectic solvents promoted by BH ₃ NH ₃ . Beilstein Journal of Organic Chemistry, 2021, 17, 1041-1047.	2.2	4
59	Continuous Flow Synthesis of α-Trifluoromethylthiolated Esters and Amides from Carboxylic Acids: a Telescoped Approach. Journal of Organic Chemistry, 2021, 86, 14207-14212.	3.2	4
60	Synthesis of Some 2,2′:6′,2″â€Terpyridines Disubstituted in Positions 6 and 6″ with Headâ€ŧoâ€Tail C Amino Acids and Dipeptides: A Simple Entry to a Reversible Inducer of Folding in Amino Acid Sequences. European Journal of Organic Chemistry, 2008, 2008, 3976-3983.	Driented 2.4	3
61	Stereoselective organocatalysis and flow chemistry. Physical Sciences Reviews, 2021, 6, .	0.8	3
62	Organocatalytic Michael Addition to (D)-Mannitol-Derived Enantiopure Nitroalkenes: A Valuable Strategy for the Synthesis of Densely Functionalized Chiral Molecules. Molecules, 2019, 24, 4588.	3.8	2
63	Stereoselective Michael additions on α-aminoacrylates as the key step to an <scp>l</scp> -Oic analogue bearing a quaternary stereocenter. Organic and Biomolecular Chemistry, 2020, 18, 671-674.	2.8	2
64	In-flow enantioselective homogeneous organic synthesis. Green Processing and Synthesis, 2021, 10, 768-778.	3.4	2
65	Poly(methylhydrosiloxane)-supported chiral thiourea-based bifunctional catalysts. Recyclable Catalysis, 2012, 1, 1-5.	0.1	1
66	Enantiomerically Pure Phenanthroline or Bipyridine Containing Macrocycles: A New Class of Ligands for Asymmetric Catalysis ChemInform, 2003, 34, no.	0.0	0
67	Polymer-Supported Organic Catalysts. ChemInform, 2003, 34, no.	0.0	0
68	Enantioselective 1,3-Dipolar Cycloadditions of Unsaturated Aldehydes Promoted by a Poly(ethylene) Tj ETQq0 0	0 rgBT /0\	verlock 10 Tf

69	Chiral Bis-pyridinium Salts as Novel Stereoselective Catalysts for the Metal-Free Diels-Alder Cycloaddition of \hat{I}_{\pm} , \hat{I}^2 -Unsaturated Aldehydes. Synthesis, 2011, 2011, 1926-1929.	2.3	0
70	Stereoselective Synthesis of Chiral α-SCF3-β-Ketoesters Featuring a Quaternary Stereocenter. Symmetry, 2021, 13, 92.	2.2	0