Jason Ear

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6501729/publications.pdf

Version: 2024-02-01

933447 996975 16 632 10 15 h-index citations g-index papers 21 21 21 2562 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	A long isoform of GIV/Girdin contains a PDZ-binding module that regulates localization and G-protein binding. Journal of Biological Chemistry, 2021, 296, 100493.	3.4	8
2	E-cigarettes compromise the gut barrier and trigger inflammation. IScience, 2021, 24, 102035.	4.1	36
3	Tyrosine-Based Signals Regulate the Assembly of Dapleâ«PARD3 Complex at Cell-Cell Junctions. IScience, 2020, 23, 100859.	4.1	9
4	DAPLE protein inhibits nucleotide exchange on $G\hat{l}\pm s$ and $G\hat{l}\pm q$ via the same motif that activates $G\hat{l}\pm i$. Journal of Biological Chemistry, 2020, 295, 2270-2284.	3.4	14
5	Two Isoforms of the Guanine Nucleotide Exchange Factor, Daple/CCDC88C Cooperate as Tumor Suppressors. Scientific Reports, 2019, 9, 12124.	3.3	6
6	Convergence of Wnt, growth factor, and heterotrimeric G protein signals on the guanine nucleotide exchange factor Daple. Science Signaling, 2018, 11 , .	3.6	26
7	Prognostic Relevance of CCDC88C (Daple) Transcripts in the Peripheral Blood of Patients with Cutaneous Melanoma. Scientific Reports, 2018, 8, 18036.	3.3	8
8	Convergence of Wnt, Growth Factor and Trimeric Gâ€protein Signals on the Signaling Scaffold Daple. FASEB Journal, 2018, 32, 533.37.	0.5	0
9	A Daple-Akt feed-forward loop enhances noncanonical Wnt signals by compartmentalizing \hat{I}^2 -catenin. Molecular Biology of the Cell, 2017, 28, 3709-3723.	2.1	14
10	Biochemical, Biophysical and Cellular Techniques to Study the Guanine Nucleotide Exchange Factor, GIV/Girdin. Current Protocols in Chemical Biology, 2016, 8, 265-298.	1.7	5
11	GIV/Girdin activates \widehat{G} ±i and inhibits \widehat{G} ±s via the same motif. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5721-30.	7.1	33
12	Structural basis for activation of trimeric Gi proteins by multiple growth factor receptors via GIV/Girdin. Molecular Biology of the Cell, 2014, 25, 3654-3671.	2.1	54
13	Tyrosine Phosphorylation of the Gî±-Interacting Protein GIV Promotes Activation of Phosphoinositide 3-Kinase During Cell Migration. Science Signaling, 2011, 4, ra64.	3.6	78
14	A GDI (AGS3) and a GEF (GIV) regulate autophagy by balancing G protein activity and growth factor signals. Molecular Biology of the Cell, 2011, 22, 673-686.	2.1	111
15	A Gαi–GIV Molecular Complex Binds Epidermal Growth Factor Receptor and Determines Whether Cells Migrate or Proliferate. Molecular Biology of the Cell, 2010, 21, 2338-2354.	2.1	148
16	A Structural Determinant That Renders Gαi Sensitive to Activation by GIV/Girdin Is Required to Promote Cell Migration. Journal of Biological Chemistry, 2010, 285, 12765-12777.	3.4	77