Jan Coenen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6501331/publications.pdf

Version: 2024-02-01

57758 98798 6,521 217 44 67 citations h-index g-index papers 218 218 218 4578 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Progress from ASDEX Upgrade experiments in preparing the physics basis of ITER operation and DEMO scenario development. Nuclear Fusion, 2022, 62, 042006.	3.5	15
2	Latest results of Eurofusion plasma-facing components research in the areas of power loading, material erosion and fuel retention. Nuclear Fusion, 2022, 62, 042013.	3 . 5	11
3	Experimental confirmation of efficient island divertor operation and successful neoclassical transport optimization in Wendelstein 7-X. Nuclear Fusion, 2022, 62, 042022.	3 . 5	24
4	Manufacturing of W/steel composites using electro-discharge sintering process. Nuclear Materials and Energy, 2022, 30, 101089.	1.3	3
5	Charpy impact tests of tungsten fiber–reinforced composite from â~'150 °C to 1000 °C. Materials Letters, 2022, 311, 131526.	2.6	3
6	Overview of JET results for optimising ITER operation. Nuclear Fusion, 2022, 62, 042026.	3 . 5	52
7	Irradiation effects in tungsten—From surface effects to bulk mechanical properties. Nuclear Materials and Energy, 2022, 30, 101093.	1.3	5
8	First plasma exposure of a pre-damaged ITER-like plasma-facing unit in the WEST tokamak: procedure for the PFU preparation and lessons learned. Nuclear Fusion, 2022, 62, 056010.	3 . 5	5
9	Analysis of trapping sites for deuterium in W–Cr–Y SMART alloy. Vacuum, 2022, 199, 110956.	3 . 5	3
10	Enhanced performance in fusion plasmas through turbulence suppression by megaelectronvolt ions. Nature Physics, 2022, 18, 776-782.	16.7	36
11	The influence of powder characteristics on densification behavior and microstructure evolution of W-Cr-Zr alloy consolidated by field-assisted sintering technology. International Journal of Refractory Metals and Hard Materials, 2022, 108, 105939.	3.8	6
12	Fusion—Reactor Materials. , 2021, , 594-619.		0
13	Optimized design of a tungsten–copper functionally graded material monoblock for minimal von Mises stress meeting the material operational temperature window. Nuclear Fusion, 2021, 61, 046050.	3 . 5	4
14	Self-passivating smart tungsten alloys for DEMO: a progress in joining and upscale for a first wall mockup. Tungsten, 2021, 3, 101-115.	4.8	6
15	Smart alloys as armor material for DEMO: Overview of properties and joining to structural materials. Fusion Engineering and Design, 2021, 166, 112272.	1.9	6
16	Characteristics of Microstructure Evolution during FAST Joining of the Tungsten Foil Laminate. Metals, 2021, 11, 886.	2.3	4
17	Deuterium retention in tungsten fiber-reinforced tungsten composites. Nuclear Materials and Energy, 2021, 27, 100972.	1.3	3
18	Design of tungsten fiber-reinforced tungsten composites with porous matrix. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 817, 141361.	5.6	20

#	Article	IF	CITATIONS
19	Improving the W Coating Uniformity by a COMSOL Model-Based CVD Parameter Study for Denser Wf/W Composites. Metals, 2021, 11, 1089.	2.3	7
20	On grain growth and phase precipitation behaviors during W-Cr-Zr alloy densification using field-assisted sintering technology. International Journal of Refractory Metals and Hard Materials, 2021, 98, 105552.	3.8	8
21	Influence of the applied pressure on the microstructure evolution of W-Cr-Y-Zr alloys during the FAST process. Fusion Engineering and Design, 2021, 169, 112474.	1.9	3
22	Advanced Self-Passivating Alloys for an Application under Extreme Conditions. Metals, 2021, 11, 1255.	2.3	12
23	Interlayer properties of tungsten fibre-reinforced composites and their determination by different methods. Nuclear Materials and Energy, 2021, 28, 101060.	1.3	4
24	Modeling and experimental validation of a W <mml:math altimg="si81.svg" display="inline" id="d1e1974" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mi>f</mml:mi></mml:mrow></mml:msub></mml:math> /W-fabrication by chemical vapor deposition and infiltration. Nuclear Materials and Energy, 2021, 28, 101048.	1.3	6
25	Yttria-Coated Tungsten Fibers for Use in Tungsten Fiber-Reinforced Composites: A Comparative Study on PVD vs. CVD Routes. Coatings, 2021, 11, 1128.	2.6	4
26	Manufacturing of W-steel joint using plasma sprayed graded W/steel-interlayer with current assisted diffusion bonding. Fusion Engineering and Design, 2021, 172, 112896.	1.9	7
27	Tungsten fiber reinforced tungsten (Wf/W) using yarn based textile preforms. Physica Scripta, 2021, 96, 124063.	2.5	4
28	Modeling and validation of chemical vapor deposition of tungsten for tungsten fiber reinforced tungsten composites. Surface and Coatings Technology, 2020, 381, 124745.	4.8	13
29	Micro-structured tungsten, a high heat flux pulse proof material. Nuclear Materials and Energy, 2020, 25, 100789.	1.3	2
30	Tungsten–chromium–yttrium alloys as first wall armor material: Yttrium concentration, oxygen content and transmutation elements. Fusion Engineering and Design, 2020, 158, 111667.	1.9	11
31	Metallography and mechanical parameters of plasma-exposed plasma-facing materials and components. Physica Scripta, 2020, T171, 014042.	2.5	5
32	Fusion Materials Development at Forschungszentrum Jýlich. Advanced Engineering Materials, 2020, 22, 1901376.	3.5	16
33	Micro-structuring of tungsten for mitigation of ELM-like fatigue. Physica Scripta, 2020, , .	2.5	1
34	Fiber Volume Fraction Influence on Randomly Distributed Short Fiber Tungsten Fiberâ€Reinforced Tungsten Composites. Advanced Engineering Materials, 2020, 22, 1901242.	3.5	11
35	Overview of challenges and developments in joining tungsten and steel for future fusion reactors. Physica Scripta, 2020, T171, 014028.	2.5	28
36	The use of tungsten yarns in the production for W _{<i>f</i>} /W. Physica Scripta, 2020, T171, 014061.	2.5	7

#	Article	IF	Citations
37	Development of tungsten fiber-reinforced tungsten with a porous matrix. Physica Scripta, 2020, T171, 014030.	2.5	12
38	17th international conference on plasma-facing materials and components for fusion applications. Physica Scripta, 2020, T171, 010201.	2.5	0
39	Smart Tungsten-based Alloys for a First Wall of DEMO. Fusion Engineering and Design, 2020, 159, 111742.	1.9	13
40	On the plasma suitability of WCrY smart alloysâ€"the effect of mixed D+Ar/He plasmas. Physica Scripta, 2020, T171, 014002.	2.5	4
41	Estimation of the fracture toughness of tungsten fibre-reinforced tungsten composites. Engineering Fracture Mechanics, 2020, 232, 107011.	4.3	21
42	The influence of heating rate on W-Cr-Zr alloy densification process and microstructure evolution during spark plasma sintering. Powder Technology, 2020, 370, 9-18.	4.2	16
43	Investigating the potential of FGMs through numerical minimization of thermal stresses. Physica Scripta, 2020, T171, 014001.	2.5	4
44	Impact of H-mode plasma operation on pre-damaged tungsten divertor tiles in ASDEX Upgrade. Physica Scripta, 2020, T171, 014037.	2.5	4
45	Interpretative transport modeling of the WEST boundary plasma: main plasma and light impurities. Nuclear Fusion, 2020, 60, 126048.	3.5	18
46	Insight into single-fiber push-out test of tungsten fiber-reinforced tungsten. Composite Interfaces, 2019, 26, 107-126.	2.3	8
47	First divertor physics studies in Wendelstein 7-X. Nuclear Fusion, 2019, 59, 096014.	3.5	34
48	Overview of physics studies on ASDEX Upgrade. Nuclear Fusion, 2019, 59, 112014.	3.5	38
49	Development and Performance of Tungsten-Coated Graphitic Foam for Plasma-Facing Components. Fusion Science and Technology, 2019, 75, 551-557.	1.1	3
50	Overview of first Wendelstein 7-X high-performance operation. Nuclear Fusion, 2019, 59, 112004.	3.5	165
51	Erosion, screening, and migration of tungsten in the JET divertor. Nuclear Fusion, 2019, 59, 096035.	3.5	60
52	Argon-seeded plasma exposure and oxidation performance of tungsten-chromium-yttrium smart alloys. Tungsten, 2019, 1, 159-168.	4.8	7
53	Preferential sputtering induced Cr-Diffusion during plasma exposure of WCrY smart alloys. Journal of Nuclear Materials, 2019, 526, 151767.	2.7	6
54	The microstructure and property of W/Ti multilayer composites prepared by spark plasma sintering. International Journal of Refractory Metals and Hard Materials, 2019, 79, 138-144.	3.8	5

#	Article	IF	CITATIONS
55	A locked mode indicator for disruption prediction on JET and ASDEX upgrade. Fusion Engineering and Design, 2019, 138, 254-266.	1.9	8
56	On the nature of carbon embrittlement of tungsten fibers during powder metallurgical processes. Fusion Engineering and Design, 2019, 145, 18-22.	1.9	21
57	Fracture behavior of random distributed short tungsten fiber-reinforced tungsten composites. Nuclear Fusion, 2019, 59, 086034.	3.5	16
58	Overview of the JET preparation for deuterium–tritium operation with the ITER like-wall. Nuclear Fusion, 2019, 59, 112021.	3.5	87
59	Production of tungsten-fibre reinforced tungsten composites by a novel continuous chemical vapour deposition process. Fusion Engineering and Design, 2019, 146, 1426-1430.	1.9	11
60	Micro- and macro- elastic properties of tungsten fiber-reinforced tungsten composites probed by nano-indentation and laser ultrasonics. Nuclear Materials and Energy, 2019, 19, 262-266.	1.3	4
61	Atmospheric plasma spraying of functionally graded steel/tungsten layers for the first wall of future fusion reactors. Surface and Coatings Technology, 2019, 366, 170-178.	4.8	44
62	Materials development for new high heat-flux component mock-ups for DEMO. Fusion Engineering and Design, 2019, 146, 1431-1436.	1.9	21
63	Sublimation of advanced tungsten alloys under DEMO relevant accidental conditions. Fusion Engineering and Design, 2019, 146, 1198-1202.	1.9	12
64	Tritium distributions on W-coated divertor tiles used in the third JET ITER-like wall campaign. Nuclear Materials and Energy, 2019, 18, 258-261.	1.3	10
65	Population modelling of the He II energy levels in tokamak plasmas: I. Collisional excitation model. Journal of Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 045001.	1.5	1
66	Spark Plasma Sintering Produced W-Fiber-Reinforced Tungsten Composites., 2019,, 239-261.		5
67	Erosion and deposition investigations on Wendelstein 7-X first wall components for the first operation phase in divertor configuration. Fusion Engineering and Design, 2019, 146, 242-245.	1.9	17
68	Ultra-fast sintered functionally graded Fe/W composites for the first wall of future fusion reactors. Composites Part B: Engineering, 2019, 164, 205-214.	12.0	41
69	The microstructure and tensile properties of W/Ti multilayer composites prepared by spark plasma sintering. Journal of Alloys and Compounds, 2019, 780, 116-130.	5.5	25
70	Evaluation of the high temperature oxidation of W-Cr-Zr self-passivating alloys. Corrosion Science, 2019, 147, 201-211.	6.6	24
71	Analysis of deposited layers with deuterium and impurity elements on samples from the divertor of JET with ITER-like wall. Journal of Nuclear Materials, 2019, 516, 202-213.	2.7	18
72	Analysis of the outer divertor hot spot activity in the protection video camera recordings at JET. Fusion Engineering and Design, 2019, 139, 115-123.	1.9	3

#	Article	IF	Citations
73	Correlation of microstructural and mechanical properties of K-doped tungsten fibers used as reinforcement of tungsten matrix for high temperature applications. International Journal of Refractory Metals and Hard Materials, 2019, 79, 204-216.	3.8	19
74	Improved neutron activation dosimetry for fusion. Fusion Engineering and Design, 2019, 139, 109-114.	1.9	7
7 5	Smart first wall materials for intrinsic safety of a fusion power plant. Fusion Engineering and Design, 2018, 136, 878-882.	1.9	12
76	Probe manipulators for Wendelstein 7-X and their interaction with the magnetic topology. Plasma Science and Technology, 2018, 20, 054002.	1.5	0
77	Influence of the interface strength on the mechanical properties of discontinuous tungsten fiber-reinforced tungsten composites produced by field assisted sintering technology. Composites Part A: Applied Science and Manufacturing, 2018, 107, 342-353.	7.6	68
78	Plastic deformation of recrystallized tungsten-potassium wires: Constitutive deformation law in the temperature range 22–600â€Â°C. International Journal of Refractory Metals and Hard Materials, 2018, 73, 38-45.	3.8	13
79	Neutron spectroscopy measurements of 14 MeV neutrons at unprecedented energy resolution and implications for deuterium–tritium fusion plasma diagnostics. Measurement Science and Technology, 2018, 29, 045502.	2.6	35
80	Experiments on transient melting of tungsten by ELMs in ASDEX Upgrade. Nuclear Fusion, 2018, 58, 026024.	3.5	38
81	The evolution of shear bands in Ta-2.5W alloy during cold rolling. Materials Science & Camp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 726, 259-273.	5.6	11
82	An improved model for the accurate calculation of parallel heat fluxes at the JET bulk tungsten outer divertor. Nuclear Fusion, 2018, 58, 106034.	3.5	6
83	Plasma exposures of a high-conductivity graphitic foam for plasma facing components. Nuclear Materials and Energy, 2018, 17, 123-128.	1.3	4
84	Heat flux analysis of Type-I ELM impact on a sloped, protruding surface in the JET bulk tungsten divertor. Nuclear Materials and Energy, 2018, 17, 182-187.	1.3	3
85	Improved pseudo-ductile behavior of powder metallurgical tungsten short fiber-reinforced tungsten (W/W). Nuclear Materials and Energy, 2018, 15, 214-219.	1.3	36
86	Oxidation resistance of bulk plasma-facing tungsten alloys. Nuclear Materials and Energy, 2018, 15, 226-231.	1.3	28
87	On Oxidation Resistance Mechanisms at 1273 K of Tungsten-Based Alloys Containing Chromium and Yttria. Metals, 2018, 8, 488.	2.3	16
88	Aiming at understanding thermo-mechanical loads in the first wall of DEMO: Stress–strain evolution in a Eurofer-tungsten test component featuring a functionally graded interlayer. Fusion Engineering and Design, 2018, 135, 141-153.	1.9	28
89	Textile preforms for tungsten fibre-reinforced composites. Journal of Composite Materials, 2018, 52, 3875-3884.	2.4	27
90	Size effects on the tensile properties and deformation mechanism of commercial pure titanium foils. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 730, 244-261.	5.6	33

#	Article	IF	Citations
91	WCrY smart alloys as advanced plasma-facing materials – Exposure to steady-state pure deuterium plasmas in PSI-2. Nuclear Materials and Energy, 2018, 15, 220-225.	1.3	21
92	Tungsten fibre-reinforced composites for advanced plasma facing components. Nuclear Materials and Energy, 2017, 12, 1308-1313.	1.3	30
93	Advanced smart tungsten alloys for a future fusion power plant. Plasma Physics and Controlled Fusion, 2017, 59, 064003.	2.1	27
94	Smart tungsten alloys as a material for the first wall of a future fusion power plant. Nuclear Fusion, 2017, 57, 066020.	3.5	40
95	Microstructure, mechanical behaviour and fracture of pure tungsten wire after different heat treatments. International Journal of Refractory Metals and Hard Materials, 2017, 68, 29-40.	3.8	53
96	Efficient generation of energetic ions in multi-ion plasmas by radio-frequency heating. Nature Physics, 2017, 13, 973-978.	16.7	73
97	Thermal analysis of protruding surfaces in the JET divertor. Nuclear Fusion, 2017, 57, 066009.	3.5	1
98	Baseline high heat flux and plasma facing materials for fusion. Nuclear Fusion, 2017, 57, 092006.	3.5	141
99	The influence of annealing on yttrium oxide thin film deposited by reactive magnetron sputtering: Process and microstructure. Nuclear Materials and Energy, 2017, 10, 1-8.	1.3	52
100	Physics conclusions in support of ITER W divertor monoblock shaping. Nuclear Materials and Energy, 2017, 12, 60-74.	1.3	128
101	Tensile deformation behavior of tungsten fibre-reinforced tungsten composite specimens in as-fabricated state. Fusion Engineering and Design, 2017, 124, 396-400.	1.9	46
102	Mechanical properties of as-fabricated and 2300 \hat{A}° C annealed tungsten wire tested up to 600 \hat{A}° C. International Journal of Refractory Metals and Hard Materials, 2017, 66, 127-134.	3.8	32
103	Advanced materials for a damage resilient divertor concept for DEMO: Powder-metallurgical tungsten-fibre reinforced tungsten. Fusion Engineering and Design, 2017, 124, 964-968.	1.9	40
104	Plasma-wall interaction of advanced materials. Nuclear Materials and Energy, 2017, 12, 307-312.	1.3	20
105	Tensile behaviour of drawn tungsten wire used in tungsten fibre-reinforced tungsten composites. Physica Scripta, 2017, T170, 014032.	2.5	18
106	Longitudinal and shear wave velocities in pure tungsten and tungsten fiber-reinforced tungsten composites. Physica Scripta, 2017, T170, 014024.	2.5	3
107	Overview of progress in European medium sized tokamaks towards an integrated plasma-edge/wall solution ^a . Nuclear Fusion, 2017, 57, 102014.	3.5	23
108	Transient induced tungsten melting at the Joint European Torus (JET). Physica Scripta, 2017, T170, 014013.	2.5	20

#	Article	IF	Citations
109	Development and characterization of powder metallurgically produced discontinuous tungsten fiber reinforced tungsten composites. Physica Scripta, 2017, T170, 014005.	2.5	23
110	Material testing facilities and programs for plasma-facing component testing. Nuclear Fusion, 2017, 57, 092012.	3.5	68
111	Overview of the JET results in support to ITER. Nuclear Fusion, 2017, 57, 102001.	3.5	150
112	Overview of wall probes for erosion and deposition studies in the TEXTOR tokamak. Matter and Radiation at Extremes, 2017, 2, 87-104.	3.9	23
113	New oxidation-resistant tungsten alloys for use in the nuclear fusion reactors. Physica Scripta, 2017, T170, 014012.	2.5	34
114	Overview of ASDEX Upgrade results. Nuclear Fusion, 2017, 57, 102015.	3.5	53
115	Spectroscopic determination of inverse photon efficiencies of W atoms in the scrape-off layer of TEXTOR. Physica Scripta, 2017, T170, 014052.	2.5	20
116	Investigation of transient melting of tungsten by ELMs in ASDEX Upgrade. Physica Scripta, 2017, T170, 014030.	2.5	19
117	Preparation of erosion and deposition investigations on plasma facing components in Wendelstein 7-X. Physica Scripta, 2017, T170, 014010.	2.5	10
118	Plasma–wall interaction studies within the EUROfusion consortium: progress on plasma-facing components development and qualification. Nuclear Fusion, 2017, 57, 116041.	3.5	75
119	Experimental estimation of tungsten impurity sputtering due to Type I ELMs in JET-ITER-like wall using pedestal electron cyclotron emission and target Langmuir probe measurements. Physica Scripta, 2016, T167, 014005.	2.5	31
120	Melt damage to the JET ITER-like Wall and divertor. Physica Scripta, 2016, T167, 014070.	2.5	58
121	Properties of drawn W wire used as high performance fibre in tungsten fibre-reinforced tungsten composite. IOP Conference Series: Materials Science and Engineering, 2016, 139, 012043.	0.6	36
122	Materials for DEMO and reactor applicationsâ€"boundary conditions and new concepts. Physica Scripta, 2016, T167, 014002.	2.5	85
123	Advanced tungsten materials for plasma-facing components of DEMO and fusion power plants. Fusion Engineering and Design, 2016, 109-111, 1046-1052.	1.9	70
124	Development of tungsten fibre-reinforced tungsten composites towards their use in DEMO—potassium doped tungsten wire. Physica Scripta, 2016, T167, 014006.	2.5	77
125	Chemically deposited tungsten fibre-reinforced tungsten $\hat{a} \in \text{``The way to a mock-up for divertor applications. Nuclear Materials and Energy, 2016, 9, 75-83.}$	1.3	55
126	Behavior of tungsten fiber-reinforced tungsten based on single fiber push-out study. Nuclear Materials and Energy, 2016, 9, 416-421.	1.3	27

#	Article	IF	CITATIONS
127	Mechanical and microstructural changes in tungsten due to irradiation damage. Physica Scripta, 2016, T167, 014007.	2.5	13
128	Local migration studies of high-Zmetals in the TEXTOR tokamak. Physica Scripta, 2016, T167, 014058.	2.5	9
129	Divertor plasma conditions and neutral dynamics in horizontal and vertical divertor configurations in JET-ILW low confinement mode plasmas. Journal of Nuclear Materials, 2015, 463, 471-476.	2.7	20
130	Tracer techniques for the assessment of material migration and surface modification of plasma-facing components. Journal of Nuclear Materials, 2015, 463, 280-284.	2.7	13
131	Conceptual study of ferromagnetic pebbles for heat exhaust in fusion reactors with short power decay length. Nuclear Materials and Energy, 2015, 2, 12-19.	1.3	5
132	3D effects of edge magnetic field configuration on divertor/scrape-off layer transport and optimization possibilities for a future reactor. Nuclear Fusion, 2015, 55, 104021.	3.5	23
133	Overview of the JET results. Nuclear Fusion, 2015, 55, 104001.	3.5	50
134	Beryllium migration in JET ITER-like wall plasmas. Nuclear Fusion, 2015, 55, 063021.	3.5	83
135	ELM induced tungsten melting and its impact on tokamak operation. Journal of Nuclear Materials, 2015, 463, 78-84.	2.7	53
136	ELM-induced transient tungsten melting in the JET divertor. Nuclear Fusion, 2015, 55, 023010.	3.5	83
137	Recent ASDEX Upgrade research in support of ITER and DEMO. Nuclear Fusion, 2015, 55, 104010.	3.5	16
138	Theoretical investigation of crack formation in tungsten after heat loads. Journal of Nuclear Materials, 2015, 463, 246-249.	2.7	28
139	Modeling of tungsten transport in the linear plasma device PSI-2 with the 3D Monte-Carlo code ERO. Journal of Nuclear Materials, 2015, 463, 268-271.	2.7	7
140	Ion target impact energy during Type I edge localized modes in JET ITER-like Wall. Plasma Physics and Controlled Fusion, 2015, 57, 085006.	2.1	44
141	Thermal analysis of an exposed tungsten edge in the JET divertor. Journal of Nuclear Materials, 2015, 463, 415-419.	2.7	14
142	Characterising dust in JET with the new ITER-like wall. Plasma Physics and Controlled Fusion, 2015, 57, 014037.	2.1	37
143	Contrasting H-mode behaviour with deuterium fuelling and nitrogen seeding in the all-carbon and metallic versions of JET. Nuclear Fusion, 2014, 54, 073016.	3.5	37
144	First scenario development with the JET new ITER-like wall. Nuclear Fusion, 2014, 54, 013011.	3.5	59

#	Article	IF	Citations
145	Numerical evaluation of heat flux and surface temperature on a misaligned JET divertor W lamella during ELMs. Nuclear Fusion, 2014, 54, 123011.	3.5	26
146	Investigation of the impact of transient heat loads applied by laser irradiation on ITER-grade tungsten. Physica Scripta, 2014, T159, 014005.	2.5	65
147	Effect of the minority concentration on ion cyclotron resonance heating in presence of the ITER-like wall in JET. , 2014, , .		3
148	Movement of liquid beryllium during melt events in JET with ITER-like wall. Physica Scripta, 2014, T159, 014041.	2.5	13
149	Surface erosion and modification of toughened, fine-grained, recrystallized tungsten exposed to TEXTOR edge plasma. Physica Scripta, 2014, T159, 014038.	2.5	10
150	In situdeuterium inventory measurements of a-C:D layers on tungsten in TEXTOR by laser induced ablation spectroscopy. Physica Scripta, 2014, T159, 014054.	2.5	5
151	Transient impurity events in JET with the new ITER-like wall. Physica Scripta, 2014, T159, 014014.	2.5	13
152	Liquid metals as alternative solution for the power exhaust of future fusion devices: status and perspective. Physica Scripta, 2014, T159, 014037.	2.5	82
153	Research status and issues of tungsten plasma facing materials for ITER and beyond. Fusion Engineering and Design, 2014, 89, 901-906.	1.9	246
154	On the challenge of plasma heating with the JET metallic wall. Nuclear Fusion, 2014, 54, 033002.	3.5	11
155	Long-term evolution of the impurity composition and impurity events with the ITER-like wall at JET. Nuclear Fusion, 2013, 53, 073043.	3.5	35
156	First operation with the JET International Thermonuclear Experimental Reactor-like wall. Physics of Plasmas, $2013, 20, .$	1.9	56
157	Beryllium migration and evolution of first wall surface composition in the JET ILW configuration. Journal of Nuclear Materials, 2013, 438, S262-S266.	2.7	30
158	Impact of carbon and tungsten as divertor materials on the scrape-off layer conditions in JET. Nuclear Fusion, 2013, 53, 093016.	3.5	91
159	Impact of nitrogen seeding on confinement and power load control of a high-triangularity JET ELMy H-mode plasma with a metal wall. Nuclear Fusion, 2013, 53, 113025.	3.5	118
160	Overview of the JET results with the ITER-like wall. Nuclear Fusion, 2013, 53, 104002.	3.5	70
161	Simulation of spectroscopic patterns obtained in W/C test-limiter sputtering experiment at TEXTOR. Journal of Nuclear Materials, 2013, 438, S351-S355.	2.7	6
162	Dust investigations in TEXTOR: Impact of dust on plasma–wall interactions and on plasma performance. Journal of Nuclear Materials, 2013, 438, S126-S132.	2.7	19

#	Article	IF	Citations
163	Deuterium retention in Toughened, Fine-Grained Recrystallized Tungsten. Journal of Nuclear Materials, 2013, 438, S1052-S1054.	2.7	19
164	Overview on plasma operation with a full tungsten wall in ASDEX Upgrade. Journal of Nuclear Materials, 2013, 438, S34-S41.	2.7	156
165	Power handling of the bulk tungsten divertor row at JET: First measurements and comparison to the GTM thermal model. Fusion Engineering and Design, 2013, 88, 1778-1781.	1.9	1
166	Impact of the ITER-like wall on divertor detachment and on the density limit in the JET tokamak. Journal of Nuclear Materials, 2013, 438, S139-S147.	2.7	76
167	Tungsten migration studies by controlled injection of volatile compounds. Journal of Nuclear Materials, 2013, 438, S170-S174.	2.7	17
168	L-mode radiative plasma edge studies for model validation in ASDEX Upgrade and JET. Journal of Nuclear Materials, 2013, 438, S321-S325.	2.7	17
169	Residual carbon content in the initial ITER-Like Wall experiments at JET. Journal of Nuclear Materials, 2013, 438, S303-S308.	2.7	7 5
170	Material deposition and migration processes with resonant magnetic perturbation fields at TEXTOR. Journal of Nuclear Materials, 2013, 438, S602-S606.	2.7	5
171	Tungsten divertor erosion in all metal devices: Lessons from the ITER like wall of JET. Journal of Nuclear Materials, 2013, 438, S42-S47.	2.7	116
172	Overview of ASDEX Upgrade results. Nuclear Fusion, 2013, 53, 104003.	3.5	36
173	Penetration depths of injected/sputtered tungsten in the plasma edge layer of TEXTOR. Journal of Nuclear Materials, 2013, 438, S865-S870.	2.7	13
174	First nitrogen-seeding experiments in JET with the ITER-like Wall. Journal of Nuclear Materials, 2013, 438, S258-S261.	2.7	76
175	Carbon deposition at the bottom of gaps in TEXTOR experiments. Journal of Nuclear Materials, 2013, 438, S775-S779.	2.7	5
176	ICRF specific plasma wall interactions in JET with the ITER-like wall. Journal of Nuclear Materials, 2013, 438, S160-S165.	2.7	35
177	Target particle and heat loads in low-triangularity L-mode plasmas in JET with carbon and beryllium/tungsten walls. Journal of Nuclear Materials, 2013, 438, S175-S179.	2.7	16
178	Evolution of surface melt damage, its influence on plasma performance and prospects of recovery. Journal of Nuclear Materials, 2013, 438, S27-S33.	2.7	31
179	Simulation of tungsten sputtering with EDGE2D–EIRENE in low triangularity L-mode JET ITER like wall configuration. Journal of Nuclear Materials, 2013, 438, S480-S483.	2.7	8
180	Fuel retention studies with the ITER-Like Wall in JET. Nuclear Fusion, 2013, 53, 083023.	3.5	193

#	Article	IF	CITATIONS
181	Observations on the W-transport in the core plasma of JET and ASDEX Upgrade. Plasma Physics and Controlled Fusion, 2013, 55, 124036.	2.1	81
182	Mitigation of type-I ELMs with $\langle i \rangle n \langle i \rangle = 2$ fields on JET with ITER-like wall. Nuclear Fusion, 2013, 53, 073036.	3.5	39
183	Investigation of the Impact on Tungsten of Transient Heat Loads Induced by Laser Irradiation, Electron Beams and Plasma Guns. Fusion Science and Technology, 2013, 63, 197-200.	1.1	23
184	Investigation of the Impact on Tungsten of Transient Heat Loads Induced by Laser Irradiation, Electron Beams and Plasma Guns. Fusion Science and Technology, 2013, , .	1.1	1
185	Use of the focusing multi-slit ion optical system at RUssian Diagnostic Injector (RUDI). Review of Scientific Instruments, 2012, 83, 02B707.	1.3	6
186	Tokamak plasma response to droplet spraying from melted plasma-facing components. Nuclear Fusion, 2012, 52, 013013.	3.5	24
187	Resonant features of energy and particle transport during application of resonant magnetic perturbation fields at TEXTOR and DIII-D. Nuclear Fusion, 2012, 52, 043005.	3.5	27
188	Plasma Facing Materials for the JET ITER-Like Wall. Fusion Science and Technology, 2012, 62, 1-8.	1.1	26
189	Material and Power-Handling Properties of Tungsten PFCs after Steady-State Melting and Additional Transient High-Heat-Flux Exposure. Fusion Science and Technology, 2012, 61, 129-135.	1.1	8
190	Divertor tungsten tile melting and its effect on core plasma performance. Nuclear Fusion, 2012, 52, 123002.	3.5	57
191	Plasma Facing Materials for the JET ITER-Like Wall. Fusion Science and Technology, 2012, , .	1.1	0
192	Numerical simulations of tungsten melt layer erosion caused by J×B force at TEXTOR. Physica Scripta, 2011, T145, 014054.	2.5	19
193	Analysis of tungsten melt-layer motion and splashing under tokamak conditions at TEXTOR. Nuclear Fusion, 2011, 51, 083008.	3.5	56
194	Melt-layer ejection and material changes of three different tungsten materials under high heat-flux conditions in the tokamak edge plasma of TEXTOR. Nuclear Fusion, 2011, 51, 113020.	3.5	22
195	Deposition and qualification of tungsten coatings produced by plasma deposition in WF ₆ precursor gas. Physica Scripta, 2011, T145, 014030.	2.5	11
196	Quantification of tungsten sputtering at W/C twin limiters in TEXTOR with the aid of local WF6injection. Physica Scripta, 2011, T145, 014016.	2.5	30
197	Analysis of structural changes and high-heat-flux tests on pre-damaged tungsten from tokamak melt experiments. Physica Scripta, 2011, T145, 014066.	2.5	14
198	Exposure of tungsten nano-structure to TEXTOR edge plasma. Journal of Nuclear Materials, 2011, 415, S92-S95.	2.7	38

#	Article	IF	CITATIONS
199	Tungsten melt layer motion and splashing on castellated tungsten surfaces at the tokamak TEXTOR. Journal of Nuclear Materials, 2011, 415, S78-S82.	2.7	53
200	Deposition and re-erosion studies by means of local impurity injection in TEXTOR. Journal of Nuclear Materials, 2011, 415, S239-S245.	2.7	25
201	Overview of material migration and mixing, fuel retention and cleaning of ITER-like castellated structures in TEXTOR. Journal of Nuclear Materials, 2011, 415, S289-S292.	2.7	20
202	Power handling of a segmented bulk W tile for JET under realistic plasma scenarios. Journal of Nuclear Materials, 2011, 415, S943-S947.	2.7	16
203	Rotation and radial electric field in the plasma edge with resonant magnetic perturbation at TEXTOR. Nuclear Fusion, 2011, 51, 063030.	3 . 5	30
204	Operation and upgrade of diagnostic neutral beam injector RUDI at TEXTOR tokamak. Review of Scientific Instruments, 2010, 81, 02B104.	1.3	11
205	Rotation dependence of a phase delay between plasma edge electron density and temperature fields due to a fast rotating, resonant magnetic perturbation field. Physics of Plasmas, 2010, 17, .	1.9	18
206	Charge exchange recombination spectroscopy on a diagnostic hydrogen beamâ€"measuring impurity rotation and radial electric field at the tokamak TEXTOR. Journal of Physics B: Atomic, Molecular and Optical Physics, 2010, 43, 144015.	1.5	14
207	Particle confinement control with resonant magnetic perturbations at TEXTOR. Journal of Nuclear Materials, 2009, 390-391, 330-334.	2.7	46
208	The influence of resonant magnetic perturbations on edge transport in limiter H-mode plasmas in TEXTOR. Journal of Nuclear Materials, 2009, 390-391, 351-354.	2.7	10
209	Application of advanced edge diagnostics for transport studies in the stochastic boundary of TEXTOR-DED. AIP Conference Proceedings, 2008, , .	0.4	8
210	The DED at TEXTOR: Transport and Topological Properties of a Helical Divertor. Plasma and Fusion Research, 2008, 3, S1039-S1039.	0.7	7
211	Influence of the dynamic ergodic divertor on transport properties in TEXTOR. Nuclear Fusion, 2007, 47, 522-534.	3.5	37
212	Impact of stochastic magnetic fields on plasma rotation and radial electric fields in the plasma edge of the tokamak TEXTOR. Journal of Nuclear Materials, 2007, 363-365, 698-702.	2.7	39
213	Search for excited muons inppÂ⁻collisions ats=1.96  TeV. Physical Review D, 2006, 73, .	4.7	12
214	Search for the rare decayBs0→ï•μ+μâ^'with the D0 detector. Physical Review D, 2006, 74, .	4.7	13
215	Overview of JET results. Nuclear Fusion, 2003, 43, 1540-1554.	3.5	38
216	Overview of ASDEX Upgrade results. Nuclear Fusion, 2003, 43, 1570-1582.	3.5	20

#	Article	IF	CITATIONS
217	Powder Metallurgical Tungsten Fiber-Reinforced Tungsten. Materials Science Forum, 0, 825-826, 125-133.	0.3	26