Frank Heinrich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6501148/publications.pdf

Version: 2024-02-01

65 2,574 27 49
papers citations h-index g-index

68 68 68 3044
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Structural and biophysical properties of farnesylated KRas interacting with the chaperone SmgGDS-558. Biophysical Journal, 2022, , .	0.5	2
2	Membrane Surface Recognition by the ASAP1 Ph Domain and Consequences for Interactions with the Small GTPASE ARF1. Biophysical Journal, 2021, 120, 110a.	0.5	0
3	Copper-binding anticancer peptides from the piscidin family: an expanded mechanism that encompasses physical and chemical bilayer disruption. Scientific Reports, 2021, 11, 12620.	3.3	9
4	Membrane-bound KRAS approximates an entropic ensemble of configurations. Biophysical Journal, 2021, 120, 4055-4066.	0.5	1
5	Membrane Anchoring of Hck Kinase via the Intrinsically Disordered SH4-U and Length Scale Associated with Subcellular Localization. Journal of Molecular Biology, 2020, 432, 2985-2997.	4.2	10
6	Membrane surface recognition by the ASAP1 PH domain and consequences for interactions with the small GTPase Arf1. Science Advances, 2020, 6, .	10.3	26
7	Information gain from isotopic contrast variation in neutron reflectometry on protein–membrane complex structures. Journal of Applied Crystallography, 2020, 53, 800-810.	4.5	8
8	Uncovering a membrane-distal conformation of KRAS available to recruit RAF to the plasma membrane. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24258-24268.	7.1	34
9	Investigating partitioning of free <i>versus</i> macrocycle bound guest into a model POPC lipid bilayer. RSC Advances, 2020, 10, 15148-15153.	3.6	2
10	Synergistic Biophysical Techniques Reveal Structural Mechanisms of Engineered Cationic Antimicrobial Peptides in Lipid Model Membranes. Chemistry - A European Journal, 2020, 26, 6247-6256.	3.3	9
11	On the interaction of softwood hemicellulose with cellulose surfaces in relation to molecular structure and physicochemical properties of hemicellulose. Soft Matter, 2020, 16, 7063-7076.	2.7	20
12	Association of Model Neurotransmitters with Lipid Bilayer Membranes. Biophysical Journal, 2020, 118, 1044-1057.	0.5	23
13	Steering Molecular Dynamics Simulations of Membrane-Associated Proteins with Neutron Reflection Results. Journal of Chemical Theory and Computation, 2020, 16, 3408-3419.	5.3	7
14	Spatial Distribution of PEO–PPO–PEO Block Copolymer and PEO Homopolymer in Lipid Bilayers. Langmuir, 2020, 36, 3393-3403.	3.5	14
15	Accurate background correction in neutron reflectometry studies of soft condensed matter films in contact with fluid reservoirs. Journal of Applied Crystallography, 2020, 53, 15-26.	4.5	7
16	Structural Investigations of Protein–Lipid Complexes Using Neutron Scattering. Methods in Molecular Biology, 2019, 2003, 201-251.	0.9	17
17	Membrane Binding of HIV-1 Accessory Protein Nef on Sparsely-Tethered Bilayer Lipid Membranes: An Spr Study. Biophysical Journal, 2019, 116, 57a.	0.5	0
18	3. Structural investigations of membrane-associated proteins by neutron reflectometry., 2019,, 87-130.		8

#	Article	IF	CITATIONS
19	Optimization of reflectometry experiments using information theory. Journal of Applied Crystallography, 2019, 52, 47-59.	4.5	23
20	Protein Adsorption and Layer Formation at the Stainless Steel–Solution Interface Mediates Shear-Induced Particle Formation for an IgG1 Monoclonal Antibody. Molecular Pharmaceutics, 2018, 15, 1319-1331.	4.6	50
21	Selective Interaction of Colistin with Lipid Model Membranes. Biophysical Journal, 2018, 114, 919-928.	0.5	54
22	Insertion of Dengue E into lipid bilayers studied by neutron reflectivity and molecular dynamics simulations. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1216-1230.	2.6	12
23	Neutron scattering in the biological sciences: progress and prospects. Acta Crystallographica Section D: Structural Biology, 2018, 74, 1129-1168.	2.3	47
24	Fast formation of low-defect-density tethered bilayers by fusion of multilamellar vesicles. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 669-678.	2.6	34
25	Structure, Dynamics, and Function of the Membrane Associated SRC Family Kinase HCK. Biophysical Journal, 2017, 112, 388a-389a.	0.5	0
26	Segmental Deuteration of α-Synuclein for Neutron Reflectometry on Tethered Bilayers. Journal of Physical Chemistry Letters, 2017, 8, 29-34.	4.6	24
27	The cytosolic domain of T-cell receptor $\hat{\mathbf{q}}$ associates with membranes in a dynamic equilibrium and deeply penetrates the bilayer. Journal of Biological Chemistry, 2017, 292, 17746-17759.	3.4	14
28	Structural characterization of membrane-bound human immunodeficiency virus-1 Gag matrix with neutron reflectometry. Biointerphases, 2017, 12, 02D408.	1.6	17
29	Deuteration in Biological Neutron Reflectometry. Methods in Enzymology, 2016, 566, 211-230.	1.0	21
30	Tethered bilayer membranes as a complementary tool for functional and structural studies: The pyolysin case. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 2070-2080.	2.6	25
31	HIV-1 matrix-31 membrane binding peptide interacts differently with membranes containing PS vs. PI(4,5)P2. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 3071-3081.	2.6	16
32	Membrane Binding of HIV-1 Matrix Protein: Dependence on Bilayer Composition and Protein Lipidation. Journal of Virology, 2016, 90, 4544-4555.	3.4	55
33	A bacteriophage endolysin that eliminates intracellular streptococci. ELife, 2016, 5, .	6.0	64
34	An Accurate In Vitro Model of the <i>E.â€coli</i> Envelope. Angewandte Chemie, 2015, 127, 12120-12123.	2.0	7
35	An Accurate In Vitro Model of the <i>E.â€coli</i> Envelope. Angewandte Chemie - International Edition, 2015, 54, 11952-11955.	13.8	91
36	Membrane association of the PTEN tumor suppressor: Neutron scattering and MD simulations reveal the structure of protein–membrane complexes. Methods, 2015, 77-78, 136-146.	3.8	28

#	Article	IF	Citations
37	Structural Features of Membrane-bound Glucocerebrosidase and α-Synuclein Probed by Neutron Reflectometry and Fluorescence Spectroscopy. Journal of Biological Chemistry, 2015, 290, 744-754.	3.4	44
38	Molecular Details of \hat{l}_{\pm} -Synuclein Membrane Association Revealed by Neutrons and Photons. Journal of Physical Chemistry B, 2015, 119, 4812-4823.	2.6	46
39	The PTEN Tumor Suppressor Forms Homodimers in Solution. Structure, 2015, 23, 1952-1957.	3.3	30
40	Myristoylation Restricts Orientation of the GRASP Domain on Membranes and Promotes Membrane Tethering. Journal of Biological Chemistry, 2014, 289, 9683-9691.	3.4	32
41	Structure and Stability of Phospholipid Bilayers Hydrated by a Room-Temperature Ionic Liquid/Water Solution: A Neutron Reflectometry Study. Journal of Physical Chemistry B, 2014, 118, 12192-12206.	2.6	82
42	Zooming in on disordered systems: Neutron reflection studies of proteins associated with fluid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 2341-2349.	2.6	85
43	Structure and Properties of Tethered Bilayer Lipid Membranes with Unsaturated Anchor Molecules. Langmuir, 2013, 29, 8645-8656.	3.5	96
44	Modification of Tethered Bilayers by Phospholipid Exchange with Vesicles. Langmuir, 2013, 29, 4320-4327.	3.5	30
45	Biomimetic supported lipid bilayers with high cholesterol content formed by α-helical peptide-induced vesicle fusion. Journal of Materials Chemistry, 2012, 22, 19506.	6.7	43
46	Depth of \hat{l}_{\pm} -Synuclein in a Bilayer Determined by Fluorescence, Neutron Reflectometry, and Computation. Biophysical Journal, 2012, 102, 613-621.	0.5	94
47	Phase-sensitive specular neutron reflectometry for imaging the nanometer scale composition depth profile of thin-film materials. Current Opinion in Colloid and Interface Science, 2012, 17, 44-53.	7.4	159
48	Coverage-dependent morphology of PEGylated lysozyme layers adsorbed on silica. Journal of Colloid and Interface Science, 2012, 370, 170-175.	9.4	5
49	Membrane Association of the PTEN Tumor Suppressor: Molecular Details of the Protein-Membrane Complex from SPR Binding Studies and Neutron Reflection. PLoS ONE, 2012, 7, e32591.	2.5	61
50	Studying the Alpha-Synuclein Membrane Interface with Photons and Neutrons. Biophysical Journal, 2011, 100, 540a.	0.5	0
51	HIV-1 Gag Extension: Conformational Changes Require Simultaneous Interaction with Membrane and Nucleic Acid. Journal of Molecular Biology, 2011, 406, 205-214.	4.2	103
52	When beauty is only skin deep; optimizing the sensitivity of specular neutron reflectivity for probing structure beneath the surface of thin films. Journal of Applied Physics, $2011, 110, .$	2.5	15
53	Continuous distribution model for the investigation of complex molecular architectures near interfaces with scattering techniques. Journal of Applied Physics, 2011, 110, 102216-10221612.	2.5	58
54	Electrostatic Interactions and Binding Orientation of HIV-1 Matrix Studied by Neutron Reflectivity. Biophysical Journal, 2010, 99, 2516-2524.	0.5	49

#	Article	IF	CITATIONS
55	Structure of Functional Staphylococcus aureus α-Hemolysin Channels in Tethered Bilayer Lipid Membranes. Biophysical Journal, 2009, 96, 1547-1553.	0.5	138
56	A New Lipid Anchor for Sparsely Tethered Bilayer Lipid Membranes. Langmuir, 2009, 25, 4219-4229.	3.5	123
57	An ion-channel-containing model membrane: structural determination by magnetic contrast neutron reflectometry. Soft Matter, 2009, 5, 2576-2586.	2.7	67
58	Soluble Amyloid \hat{I}^2 -Oligomers Affect Dielectric Membrane Properties by Bilayer Insertion and Domain Formation: Implications for Cell Toxicity. Biophysical Journal, 2008, 95, 4845-4861.	0.5	190
59	Solid supported lipid membranes: New concepts for the biomimetic functionalization of solid surfaces. Biointerphases, 2008, 3, FA125-FA135.	1.6	47
60	Molecular-scale structural and functional characterization of sparsely tethered bilayer lipid membranes. Biointerphases, 2007, 2, 21-33.	1.6	180
61	The nuclear quadrupole interaction at inequivalent lattice sites in ammonium paramolybdate: A TDPAC study. Chemical Physics, 2006, 327, 291-299.	1.9	1
62	The Nuclear Quadrupole Interaction of 204mPb in Lead Oxides. Hyperfine Interactions, 2005, 159, 313-322.	0.5	6
63	PAC Studies of BSA Conformational Changes. Hyperfine Interactions, 2005, 159, 323-329.	0.5	8
64	Are LCAO-MO Models Useful Estimators for Electric Field Gradients in Simple Molecules?. Hyperfine Interactions, 2004, 158, 71-78.	0.5	0
65	The Electric Field Gradient of $111\mathrm{Ag}$ in Macrocyclic Crown Thioethers. Hyperfine Interactions, 2004, 158, 79-88.	0.5	3