Arkhat Abzhanov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6500307/publications.pdf

Version: 2024-02-01

49 papers

3,601 citations

236925 25 h-index 223800 46 g-index

50 all docs

50 docs citations

50 times ranked

3467 citing authors

#	Article	IF	CITATIONS
1	A review of the osteoderms of lizards (Reptilia: Squamata). Biological Reviews, 2022, 97, 1-19.	10.4	28
2	Developmental origins of the crocodylian skull table and platyrostral face. Anatomical Record, 2022, 305, 2838-2853.	1.4	9
3	Time to synchronize our clocks: Connecting developmental mechanisms and evolutionary consequences of heterochrony. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2022, 338, 87-106.	1.3	13
4	Unravelling the structural variation of lizard osteoderms. Acta Biomaterialia, 2022, 146, 306-316.	8.3	6
5	Rapid adaptive radiation of Darwin's finches depends on ancestral genetic modules. Science Advances, 2022, 8, .	10.3	18
6	Heading for higher ground: Developmental origins and evolutionary diversification of the amniote face. Current Topics in Developmental Biology, 2021, 141, 241-277.	2.2	3
7	Sex identification in embryos and adults of Darwin's finches. PLoS ONE, 2021, 16, e0237687.	2.5	4
8	Embryonic origins of the flattened skull table and snout in Crocodylia. FASEB Journal, 2021, 35, .	0.5	0
9	Lizard osteoderms – Morphological characterisation, biomimetic designÂand manufacturing based on three species. Bioinspiration and Biomimetics, 2021, 16, 066011.	2.9	6
10	A multispecies BCO2 beak color polymorphism in the Darwin's finch radiation. Current Biology, 2021, 31, 5597-5604.e7.	3.9	14
11	Geometry and dynamics link form, function, and evolution of finch beaks. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	9
12	Ecological and morphological determinants of evolutionary diversification in Darwin's finches and their relatives. Ecology and Evolution, 2020, 10, 14020-14032.	1.9	17
13	Evolutionary and ontogenetic changes of the anatomical organization and modularity in the skull of archosaurs. Scientific Reports, 2020, 10, 16138.	3.3	15
14	Differential cellular proliferation underlies heterochronic generation of cranial diversity in phyllostomid bats. EvoDevo, 2020, 11, 11.	3.2	15
15	Peramorphosis, an evolutionary developmental mechanism in neotropical bat skull diversity. Developmental Dynamics, 2019, 248, 1129-1143.	1.8	27
16	Heterochronic shifts and conserved embryonic shape underlie crocodylian craniofacial disparity and convergence. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182389.	2.6	52
17	Cranial shape evolution in adaptive radiations of birds: comparative morphometrics of Darwin's finches and Hawaiian honeycreepers. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20150481.	4.0	89
18	The skull roof tracks the brain during the evolution and development of reptiles including birds. Nature Ecology and Evolution, 2017, 1, 1543-1550.	7.8	77

#	Article	IF	CITATIONS
19	The old and new faces of morphology: the legacy of D'Arcy Thompson's †theory of transformations' and †laws of growth'. Development (Cambridge), 2017, 144, 4284-4297.	2.5	37
20	Recapitulating cranial osteogenesis with neural crest cells in 3-D microenvironments. Acta Biomaterialia, 2016, 31, 301-311.	8.3	9
21	A molecular mechanism for the origin of a key evolutionary innovation, the bird beak and palate, revealed by an integrative approach to major transitions in vertebrate history. Evolution; International Journal of Organic Evolution, 2015, 69, 1665-1677.	2.3	90
22	Shared developmental programme strongly constrains beak shape diversity in songbirds. Nature Communications, 2014, 5, 3700.	12.8	46
23	Insights into the evolution of Darwin's finches from comparative analysis of the Geospiza magnirostris genome sequence. BMC Genomics, 2013, 14, 95.	2.8	38
24	von Baer's law for the ages: lost and found principles of developmental evolution. Trends in Genetics, 2013, 29, 712-722.	6.7	74
25	Molecular characterization of dental development in a toothed archosaur, the American alligator <i>Alligator mississippiensis</i> . Evolution & Development, 2013, 15, 393-405.	2.0	13
26	CONVERGENT EVOLUTION OF SEXUAL DIMORPHISM IN SKULL SHAPE USING DISTINCT DEVELOPMENTAL STRATEGIES. Evolution; International Journal of Organic Evolution, 2013, 67, 2180-2193.	2.3	79
27	Developmental mechanisms for morphological evolution. FASEB Journal, 2013, 27, 14.4.	0.5	0
28	Closely related bird species demonstrate flexibility between beak morphology and underlying developmental programs. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16222-16227.	7.1	83
29	Paths Less Traveled: Evo-Devo Approaches to Investigating Animal Morphological Evolution. Annual Review of Cell and Developmental Biology, 2012, 28, 743-763.	9.4	37
30	Birds have paedomorphic dinosaur skulls. Nature, 2012, 487, 223-226.	27.8	207
31	ROLES FOR MODULARITY AND CONSTRAINT IN THE EVOLUTION OF CRANIAL DIVERSITY AMONG <i>ANOLIS</i> LIZARDS. Evolution; International Journal of Organic Evolution, 2012, 66, 1525-1542.	2.3	109
32	Two developmental modules establish 3D beak-shape variation in Darwin's finches. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4057-4062.	7.1	167
33	Darwin's Galápagos finches in modern biology. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 1001-1007.	4.0	25
34	Microarray Analysis of Embryonic Beak mRNA from Darwin's Finches. Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5176-pdb.prot5176.	0.3	4
35	Collection of Embryos from Darwin's Finches (Thraupidae, Passeriformes). Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5174.	0.3	9
36	In Situ Hybridization Analysis of Embryonic Beak Tissue from Darwin's Finches. Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5175.	0.3	7

#	Article	IF	Citations
37	Development of beak polymorphism in the African seedcracker, <i>Pyrenestes ostrinus </i> Development, 2009, 11, 636-646.	2.0	25
38	Darwin's Finches: Analysis of Beak Morphological Changes During Evolution: Figure 1 Cold Spring Harbor Protocols, 2009, 2009, pdb.emo119.	0.3	8
39	Pecking at the origin of vertebrate diversity: insights from the beak of the finch. FASEB Journal, 2009, 23, 15.2.	0.5	0
40	Are we there yet? Tracking the development of new model systems. Trends in Genetics, 2008, 24, 353-360.	6.7	109
41	Regulation of skeletogenic differentiation in cranial dermal bone. Development (Cambridge), 2007, 134, 3133-3144.	2.5	195
42	Cross–regulatory interactions between <i>Fgf8</i> and <i>Shh</i> in the avian frontonasal prominence. Congenital Anomalies (discontinued), 2007, 47, 136-148.	0.6	27
43	The calmodulin pathway and evolution of elongated beak morphology in Darwin's finches. Nature, 2006, 442, 563-567.	27.8	564
44	<i>Bmp4</i> and Morphological Variation of Beaks in Darwin's Finches. Science, 2004, 305, 1462-1465.	12.6	706
45	Shh and Fgf8 act synergistically to drive cartilage outgrowth during cranial development. Developmental Biology, 2004, 273, 134-148.	2.0	137
46	Dissimilar regulation of cell differentiation in mesencephalic (cranial) and sacral (trunk) neural crest cells in vitro. Development (Cambridge), 2003, 130, 4567-4579.	2.5	120
47	Embryonic expression patterns of the Hox genes of the crayfishProcambarus clarkii(Crustacea,) Tj ETQq1 1 0.78	4314 rgBT 2.0	· Oygrlock 1(
48	Homologs of Drosophila Appendage Genes in the Patterning of Arthropod Limbs. Developmental Biology, 2000, 227, 673-689.	2.0	130
49	Chelicerate Hox genes and the homology of arthropod segments. Evolution & Development, 1999, 1, 77-89.	2.0	90