Judith G Berman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6499912/publications.pdf

Version: 2024-02-01

164 papers 15,623 citations

20817 60 h-index 20358 116 g-index

226 all docs 226 docs citations

226 times ranked 10659 citing authors

#	Article	IF	CITATIONS
1	Microbial communities form rich extracellular metabolomes that foster metabolic interactions and promote drug tolerance. Nature Microbiology, 2022, 7, 542-555.	13.3	58
2	Tackling the emerging threat of antifungal resistance to human health. Nature Reviews Microbiology, 2022, 20, 557-571.	28.6	311
3	An orthologous gene coevolution network provides insight into eukaryotic cellular and genomic structure and function. Science Advances, 2022, 8, eabn0105.	10.3	10
4	Impact of tolerance to fluconazole on treatment response in <i>Candida albicans</i> bloodstream infection. Mycoses, 2021, 64, 78-85.	4.0	29
5	Combining Colistin and Fluconazole Synergistically Increases Fungal Membrane Permeability and Antifungal Cidality. ACS Infectious Diseases, 2021, 7, 377-389.	3.8	17
6	The fitness costs and benefits of trisomy of each <i>Candida albicans</i> chromosome. Genetics, 2021, 218, .	2.9	35
7	Adaptive Resistance Mutations at Suprainhibitory Concentrations Independent of SOS Mutagenesis. Molecular Biology and Evolution, 2021, 38, 4095-4115.	8.9	6
8	Tunicamycin Potentiates Antifungal Drug Tolerance via Aneuploidy in Candida albicans. MBio, 2021, 12, e0227221.	4.1	22
9	Adenosine Triphosphate Released by Candida albicans Is Associated with Reduced Skin Infectivity. Journal of Investigative Dermatology, 2021, 141, 2306-2310.	0.7	2
10	Adaptation to Fluconazole via Aneuploidy Enables Cross-Adaptation to Amphotericin B and Flucytosine in Cryptococcus neoformans. Microbiology Spectrum, 2021, 9, e0072321.	3.0	19
11	Multifactorial Mechanisms of Tolerance to Ketoconazole in Candida albicans. Microbiology Spectrum, 2021, 9, e0032121.	3.0	18
12	Aneuploidy Underlies Tolerance and Cross-Tolerance to Drugs in Candida parapsilosis. Microbiology Spectrum, 2021, 9, e0050821.	3.0	14
13	Comparing the utility of in vivo transposon mutagenesis approaches in yeast species to infer gene essentiality. Current Genetics, 2020, 66, 1117-1134.	1.7	13
14	<i>Candida albicans</i> Genetic Background Influences Mean and Heterogeneity of Drug Responses and Genome Stability during Evolution in Fluconazole. MSphere, 2020, 5, .	2.9	28
15	Combination of Miconazole and Domiphen Bromide Is Fungicidal against Biofilms of Resistant <i>Candida</i> spp. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	13
16	Evaluation of Microsatellite Typing, ITS Sequencing, AFLP Fingerprinting, MALDI-TOF MS, and Fourier-Transform Infrared Spectroscopy Analysis of Candida auris. Journal of Fungi (Basel,) Tj ETQq0 0 0 rgBT /O	vedack 10) T 25 0 137 Td
17	Elevated Vacuolar Uptake of Fluorescently Labeled Antifungal Drug Caspofungin Predicts Echinocandin Resistance in Pathogenic Yeast. ACS Central Science, 2020, 6, 1698-1712.	11.3	15
18	Identification of Essential Genes and Fluconazole Susceptibility Genes in <i>Candida glabrata</i> by Profiling <i>Hermes</i> Transposon Insertions. G3: Genes, Genomes, Genetics, 2020, 10, 3859-3870.	1.8	27

#	Article	IF	CITATIONS
19	Drug resistance and tolerance in fungi. Nature Reviews Microbiology, 2020, 18, 319-331.	28.6	342
20	Reply to Balsa-Canto et al.: Growth models are applicable to growth data, not to stationary-phase data. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 814-815.	7.1	6
21	Peptide Self-Assembly Is Linked to Antibacterial, but Not Antifungal, Activity of Histatin 5 Derivatives. MSphere, 2020, 5, .	2.9	5
22	Combining Miconazole and Domiphen Bromide Results in Excess of Reactive Oxygen Species and Killing of Biofilm Cells. Frontiers in Cell and Developmental Biology, 2020, 8, 617214.	3.7	10
23	Anidulafungin Susceptibility Testing of Candida glabrata Isolates from Blood Cultures by the MALDI Biotyper Antibiotic (Antifungal) Susceptibility Test Rapid Assay. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	17
24	Chromatin Profiling of the Repetitive and Nonrepetitive Genomes of the Human Fungal Pathogen Candida albicans. MBio, $2019,10,10$	4.1	19
25	Predicting microbial growth in a mixed culture from growth curve data. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14698-14707.	7.1	102
26	Candida auris Identification and Rapid Antifungal Susceptibility Testing Against Echinocandins by MALDI-TOF MS. Frontiers in Cellular and Infection Microbiology, 2019, 9, 20.	3.9	48
27	Selection of Candida albicans trisomy during oropharyngeal infection results in a commensal-like phenotype. PLoS Genetics, 2019, 15, e1008137.	3.5	43
28	Aneuploidy Enables Cross-Adaptation to Unrelated Drugs. Molecular Biology and Evolution, 2019, 36, 1768-1782.	8.9	75
29	Autonomously Replicating Linear Plasmids That Facilitate the Analysis of Replication Origin Function in <i>Candida albicans</i> . MSphere, 2019, 4, .	2.9	14
30	Dynamic ploidy changes drive fluconazole resistance in human cryptococcal meningitis. Journal of Clinical Investigation, 2019, 129, 999-1014.	8.2	112
31	Localizing Antifungal Drugs to the Correct Organelle Can Markedly Enhance their Efficacy. Angewandte Chemie, 2018, 130, 6338-6343.	2.0	10
32	Localizing Antifungal Drugs to the Correct Organelle Can Markedly Enhance their Efficacy. Angewandte Chemie - International Edition, 2018, 57, 6230-6235.	13.8	29
33	Maize Transposable Elements <i>Ac</i> / <i>Ds</i> as Insertion Mutagenesis Tools in <i>Candida albicans</i> . G3: Genes, Genomes, Genetics, 2018, 8, 1139-1145.	1.8	22
34	Gene Essentiality Analyzed by <i>In Vivo</i> Transposon Mutagenesis and Machine Learning in a Stable Haploid Isolate of <i>Candida albicans</i> MBio, 2018, 9, .	4.1	110
35	Antifungal tolerance is a subpopulation effect distinct from resistance and is associated with persistent candidemia. Nature Communications, 2018, 9, 2470.	12.8	175
36	Living Bacteria in Thermoresponsive Gel for Treating Fungal Infections. Advanced Functional Materials, 2018, 28, 1801581.	14.9	29

#	Article	IF	CITATIONS
37	Methodologies for in vitro and in vivo evaluation of efficacy of antifungal and antibiofilm agents and surface coatings against fungal biofilms. Microbial Cell, 2018, 5, 300-326.	3.2	81
38	Rapid Phenotypic and Genotypic Diversification After Exposure to the Oral Host Niche in <i>Candida albicans</i> . Genetics, 2018, 209, 725-741.	2.9	82
39	<i>Candida albicans</i> Dispersed Cells Are Developmentally Distinct from Biofilm and Planktonic Cells. MBio, 2018, 9, .	4.1	69
40	Functional diversification accompanies gene family expansion of MED2 homologs in Candida albicans. PLoS Genetics, 2018, 14, e1007326.	3. 5	25
41	Haplotyping a Non-meiotic Diploid Fungal Pathogen Using Induced Aneuploidies and SNP/CGH Microarray Analysis. Methods in Molecular Biology, 2017, 1551, 131-146.	0.9	1
42	Ploidy tug-of-war: Evolutionary and genetic environments influence the rate of ploidy drive in a human fungal pathogen. Evolution; International Journal of Organic Evolution, 2017, 71, 1025-1038.	2.3	42
43	Real-Time Imaging of the Azole Class of Antifungal Drugs in Live Candida Cells. ACS Chemical Biology, 2017, 12, 1769-1777.	3.4	57
44	Phenotypic and genotypic characteristics of <i>Candida albicans</i> isolates from bloodstream and mucosal infections. Mycoses, 2017, 60, 534-545.	4.0	12
45	Generation of Fluorescent Protein Fusions in Candida Species. Journal of Visualized Experiments, 2017, , .	0.3	6
46	Adaptive Mistranslation Accelerates the Evolution of Fluconazole Resistance and Induces Major Genomic and Gene Expression Alterations in Candida albicans. MSphere, 2017, 2, .	2.9	29
47	Multidrug-Resistant <i>Candida haemulonii</i> and <i>C. auris</i> , Tel Aviv, Israel. Emerging Infectious Diseases, 2017, 23, .	4.3	224
48	Assessment of Candida auris Response to Antifungal Drugs Using Time–Kill Assays and an Animal Model. Open Forum Infectious Diseases, 2017, 4, S73-S73.	0.9	2
49	Candida haemulonii and Candida auris: Emerging Multidrug-Resistant Species With Distinct Virulence and Epidemiological Characteristics. Open Forum Infectious Diseases, 2016, 3, .	0.9	2
50	Candida albicans repetitive elements display epigenetic diversity and plasticity. Scientific Reports, 2016, 6, 22989.	3.3	35
51	Ploidy dynamics and evolvability in fungi. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150461.	4.0	46
52	Phenotypic Consequences of a Spontaneous Loss of Heterozygosity in a Common Laboratory Strain of Candida albicans. Genetics, 2016, 203, 1161-1176.	2.9	28
53	Sir2 regulates stability of repetitive domains differentially in the human fungal pathogen <i>Candida albicans</i> . Nucleic Acids Research, 2016, 44, gkw594.	14.5	29
54	Heteroresistance to Fluconazole Is a Continuously Distributed Phenotype among Candida glabrata Clinical Strains Associated with <i>In Vivo</i> Persistence. MBio, 2016, 7, .	4.1	61

#	Article	IF	CITATIONS
55	High frame-rate resolution of cell division during Candida albicans filamentation. Fungal Genetics and Biology, 2016, 88, 54-58.	2.1	12
56	Ploidy plasticity: a rapid and reversible strategy for adaptation to stress. FEMS Yeast Research, 2016, 16, fow020.	2.3	86
57	diskImageR: quantification of resistance and tolerance to antimicrobial drugs using disk diffusion assays. Microbiology (United Kingdom), 2016, 162, 1059-1068.	1.8	58
58	Neocentromeres Provide Chromosome Segregation Accuracy and Centromere Clustering to Multiple Loci along a Candida albicans Chromosome. PLoS Genetics, 2016, 12, e1006317.	3.5	34
59	Parasexual Ploidy Reduction Drives Population Heterogeneity Through Random and Transient Aneuploidy in <i>Candida albicans</i> . Genetics, 2015, 200, 781-794.	2.9	98
60	Real-Time Evolution of a Subtelomeric Gene Family in <i>Candida albicans</i> . Genetics, 2015, 200, 907-919.	2.9	36
61	Targeting the Adaptability of Heterogeneous Aneuploids. Cell, 2015, 160, 771-784.	28.9	115
62	Candida albicans Morphology and Dendritic Cell Subsets Determine T Helper Cell Differentiation. Immunity, 2015, 42, 356-366.	14.3	182
63	Telomeric ORFS in Candida albicans: Does Mediator Tail Wag the Yeast?. PLoS Pathogens, 2015, 11, e1004614.	4.7	12
64	Polyploid Titan Cells Produce Haploid and Aneuploid Progeny To Promote Stress Adaptation. MBio, 2015, 6, e01340-15.	4.1	135
65	Shift and adapt: the costs and benefits of karyotype variations. Current Opinion in Microbiology, 2015, 26, 130-136.	5.1	37
66	Physical limits on kinesin-5–mediated chromosome congression in the smallest mitotic spindles. Molecular Biology of the Cell, 2015, 26, 3999-4014.	2.1	11
67	Genetic and phenotypic intra-species variation in <i>Candida albicans</i> . Genome Research, 2015, 25, 413-425.	5.5	305
68	The evolution of drug resistance in clinical isolates of Candida albicans. ELife, 2015, 4, e00662.	6.0	268
69	A Tetraploid Intermediate Precedes Aneuploid Formation in Yeasts Exposed to Fluconazole. PLoS Biology, 2014, 12, e1001815.	5.6	147
70	Silencing Is Noisy: Population and Cell Level Noise in Telomere-Adjacent Genes Is Dependent on Telomere Position and Sir2. PLoS Genetics, 2014, 10, e1004436.	3.5	30
71	Telomeric ORFs (TLOs) in Candida spp. Encode Mediator Subunits That Regulate Distinct Virulence Traits. PLoS Genetics, 2014, 10, e1004658.	3.5	36
72	Origin Replication Complex Binding, Nucleosome Depletion Patterns, and a Primary Sequence Motif Can Predict Origins of Replication in a Genome with Epigenetic Centromeres. MBio, 2014, 5, e01703-14.	4.1	21

#	Article	IF	CITATIONS
73	YMAP: a pipeline for visualization of copy number variation and loss of heterozygosity in eukaryotic pathogens. Genome Medicine, 2014, 6, 100.	8.2	95
74	Rapid Mechanisms for Generating Genome Diversity: Whole Ploidy Shifts, Aneuploidy, and Loss of Heterozygosity. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a019604-a019604.	6.2	106
75	Y MAP: a pipeline for visualization of copy number variation and loss of heterozygosity in eukaryotic pathogens. Genome Medicine, 2014, 6, 100.	8.2	33
76	The â€~obligate diploid' Candida albicans forms mating-competent haploids. Nature, 2013, 494, 55-59.	27.8	246
77	Shuttle vectors for facile gap repair cloning and integration into a neutral locus in Candida albicans. Microbiology (United Kingdom), 2013, 159, 565-579.	1.8	74
78	Monopolin recruits condensin to organize centromere DNA and repetitive DNA sequences. Molecular Biology of the Cell, 2013, 24, 2807-2819.	2.1	22
79	The Three Clades of the Telomere-Associated <i>TLO</i> Gene Family of Candida albicans Have Different Splicing, Localization, and Expression Features. Eukaryotic Cell, 2012, 11, 1268-1275.	3.4	38
80	Candida albicans. Current Biology, 2012, 22, R620-R622.	3.9	53
81	Cell-Cycle-Coupled Structural Oscillation of Centromeric Nucleosomes in Yeast. Cell, 2012, 150, 304-316.	28.9	92
82	Analysis of protein function in clinical <i>C. albicans</i> isolates. Yeast, 2012, 29, 303-309.	1.7	21
83	Neocentromeres and epigenetically inherited features of centromeres. Chromosome Research, 2012, 20, 607-619.	2.2	79
84	Does stress induce (para)sex? Implications for Candida albicans evolution. Trends in Genetics, 2012, 28, 197-203.	6.7	65
85	Flexibility of centromere and kinetochore structures. Trends in Genetics, 2012, 28, 204-212.	6.7	49
86	Skin-Resident Murine Dendritic Cell Subsets Promote Distinct and Opposing Antigen-Specific T Helper Cell Responses. Immunity, 2011, 35, 260-272.	14.3	379
87	Rad52 function prevents chromosome loss and truncation in <i>Candida albicans</i> Microbiology, 2011, 79, 1462-1482.	2.5	28
88	CaMtw1, a member of the evolutionarily conserved Mis12 kinetochore protein family, is required for efficient inner kinetochore assembly in the pathogenic yeast <i>Candida albicans</i> Microbiology, 2011, 80, 14-32.	2.5	30
89	The Requirement for the Dam1 Complex Is Dependent upon the Number of Kinetochore Proteins and Microtubules. Current Biology, 2011, 21, 889-896.	3.9	47
90	Evolutionary Dynamics of Candida albicans during <i>In Vitro</i> Evolution. Eukaryotic Cell, 2011, 10, 1413-1421.	3.4	30

#	Article	IF	CITATIONS
91	Stress Alters Rates and Types of Loss of Heterozygosity in Candida albicans. MBio, 2011, 2, .	4.1	196
92	High-Resolution SNP/CGH Microarrays Reveal the Accumulation of Loss of Heterozygosity in Commonly Used <i>Candida albicans</i> Strains. G3: Genes, Genomes, Genetics, 2011, 1, 523-530.	1.8	64
93	When abnormality is beneficial. Nature, 2010, 468, 183-184.	27.8	7
94	Genomic Plasticity of the Human Fungal Pathogen Candida albicans. Eukaryotic Cell, 2010, 9, 991-1008.	3.4	241
95	Epigenetically-Inherited Centromere and Neocentromere DNA Replicates Earliest in S-Phase. PLoS Genetics, 2010, 6, e1001068.	3.5	84
96	Low Dosage of Histone H4 Leads to Growth Defects and Morphological Changes in Candida albicans. PLoS ONE, 2010, 5, e10629.	2.5	10
97	SLA2 mutations cause SWE1-mediated cell cycle phenotypes in Candida albicans and Saccharomyces cerevisiae. Microbiology (United Kingdom), 2009, 155, 3847-3859.	1.8	23
98	Acquisition of Aneuploidy Provides Increased Fitness during the Evolution of Antifungal Drug Resistance. PLoS Genetics, 2009, 5, e1000705.	3.5	293
99	Neocentromeres Form Efficiently at Multiple Possible Loci in Candida albicans. PLoS Genetics, 2009, 5, e1000400.	3.5	152
100	Aneuploid Chromosomes Are Highly Unstable during DNA Transformation of <i>Candida albicans</i> Eukaryotic Cell, 2009, 8, 1554-1566.	3.4	77
101	Evolution in <i>Candida albicans</i> Populations During a Single Passage Through a Mouse Host. Genetics, 2009, 182, 799-811.	2.9	151
102	Additional cassettes for epitope and fluorescent fusion proteins in <i>Candida albicans</i> . Yeast, 2009, 26, 399-406.	1.7	65
103	Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature, 2009, 459, 657-662.	27.8	963
104	Dancing genomes: fungal nuclear positioning. Nature Reviews Microbiology, 2009, 7, 875-886.	28.6	65
105	Efficient and rapid identification of <i>Candida albicans </i> lelic status using SNP-RFLP. FEMS Yeast Research, 2009, 9, 1061-1069.	2.3	32
106	Growth and development: eukaryotes. Current Opinion in Microbiology, 2009, 12, 589-591.	5.1	1
107	An isochromosome confers drug resistance <i>in vivo</i> by amplification of two genes, <i>ERG11</i> and <i>TAC1</i> . Molecular Microbiology, 2008, 68, 624-641.	2.5	280
108	Dynein-dependent nuclear dynamics affect morphogenesis in Candida albicans by means of the Bub2p spindle checkpoint. Journal of Cell Science, 2008, 121, 724-724.	2.0	3

#	Article	IF	Citations
109	Haplotype Mapping of a Diploid Non-Meiotic Organism Using Existing and Induced Aneuploidies. PLoS Genetics, 2008, 4, e1.	3.5	129
110	The Parasexual Cycle in Candida albicans Provides an Alternative Pathway to Meiosis for the Formation of Recombinant Strains. PLoS Biology, 2008, 6, e110.	5.6	323
111	Dynein-dependent nuclear dynamics affect morphogenesis in <i>Candida albicans</i> by means of the Bub2p spindle checkpoint. Journal of Cell Science, 2008, 121, 466-476.	2.0	46
112	Molecular architecture of the kinetochore-microtubule attachment site is conserved between point and regional centromeres. Journal of Cell Biology, 2008, 181, 587-594.	5.2	144
113	Genotypic Evolution of Azole Resistance Mechanisms in Sequential <i>Candida albicans</i> Isolates. Eukaryotic Cell, 2007, 6, 1889-1904.	3.4	268
114	The pattern and evolution of yeast promoter bendability. Trends in Genetics, 2007, 23, 318-321.	6.7	62
115	Morphogenesis and cell cycle progression in Candida albicans. Current Opinion in Microbiology, 2006, 9, 595-601.	5.1	210
116	A Mutation in Tac1p, a Transcription Factor Regulating CDR1 and CDR2, Is Coupled With Loss of Heterozygosity at Chromosome 5 to Mediate Antifungal Resistance in Candida albicans. Genetics, 2006, 172, 2139-2156.	2.9	341
117	Transcript Profiles of Candida albicans Cortical Actin Patch Mutants Reflect Their Cellular Defects: Contribution of the Hog1p and Mkc1p Signaling Pathways. Eukaryotic Cell, 2006, 5, 1252-1265.	3.4	24
118	Aneuploidy and Isochromosome Formation in Drug-Resistant Candida albicans. Science, 2006, 313, 367-370.	12.6	630
119	Comparative genome hybridization reveals widespread aneuploidy in Candida albicans laboratory strains. Molecular Microbiology, 2005, 55, 1553-1565.	2.5	175
120	The Mitotic Cyclins Clb2p and Clb4p Affect Morphogenesis inCandida albicans. Molecular Biology of the Cell, 2005, 16, 3387-3400.	2.1	90
121	Comparative Gene Expression Analysis by a Differential Clustering Approach: Application to the Candida albicans Transcription Program. PLoS Genetics, 2005, 1, e39.	3.5	124
122	A Human-Curated Annotation of the Candida albicans Genome. PLoS Genetics, 2005, 1, e1.	3.5	293
123	Microtubules in Candida albicans Hyphae Drive Nuclear Dynamics and Connect Cell Cycle Progression to Morphogenesis. Eukaryotic Cell, 2005, 4, 1697-1711.	3.4	58
124	Candida albicans hyphae have a Spitzenkol rper that is distinct from the polarisome found in yeast and pseudohyphae. Journal of Cell Science, 2005, 118, 2935-2947.	2.0	164
125	Rewiring of the Yeast Transcriptional Network Through the Evolution of Motif Usage. Science, 2005, 309, 938-940.	12.6	268
126	Yeast Chromatin Assembly Complex 1 Protein Excludes Nonacetylatable Forms of Histone H4 from Chromatin and the Nucleus. Molecular and Cellular Biology, 2004, 24, 10180-10192.	2.3	38

#	Article	IF	Citations
127	Telomere Cap Components Influence the Rate of Senescence in Telomerase-Deficient Yeast Cells. Molecular and Cellular Biology, 2004, 24, 837-845.	2.3	33
128	Transcriptional profiling in Candida albicans reveals new adaptive responses to extracellular pH and functions for Rim101p. Molecular Microbiology, 2004, 54, 1335-1351.	2.5	227
129	Cassettes for the PCR-mediated construction of regulatable alleles inCandida albicans. Yeast, 2004, 21, 429-436.	1.7	57
130	The distinct morphogenic states of Candida albicans. Trends in Microbiology, 2004, 12, 317-324.	7.7	725
131	Functional conservation of Dhh1p, a cytoplasmic DExD/H-box protein present in large complexes. Nucleic Acids Research, 2003, 31, 4995-5002.	14.5	37
132	Molecular Genetic and Genomic Approaches to the Study of Medically Important Fungi. Infection and Immunity, 2003, 71, 2299-2309.	2.2	34
133	mRNAs Encoding Telomerase Components and Regulators Are Controlled by UPF Genes in Saccharomyces cerevisiae. Eukaryotic Cell, 2003, 2, 134-142.	3.4	62
134	MEC3,MEC1,andDDC2Are Essential Components of a Telomere Checkpoint Pathway Required for Cell Cycle Arrest during Senescence inSaccharomyces cerevisiae. Molecular Biology of the Cell, 2002, 13, 2626-2638.	2.1	119
135	A Forkhead Transcription Factor Is Important for True Hyphal as well as Yeast Morphogenesis in Candida albicans. Eukaryotic Cell, 2002, 1, 787-798.	3.4	114
136	Candida albicans: A molecular revolution built on lessons from budding yeast. Nature Reviews Genetics, 2002, 3, 918-931.	16.3	482
137	Cassettes for PCR-mediated construction of green, yellow, and cyan fluorescent protein fusions inCandida albicans. Yeast, 2001, 18, 859-864.	1.7	189
138	Candida albicans INT1 -Induced Filamentation in Saccharomyces cerevisiae Depends on Sla2p. Molecular and Cellular Biology, 2001, 21, 1272-1284.	2.3	44
139	<i>Candida albicans</i> Int1p Interacts with the Septin Ring in Yeast and Hyphal Cells. Molecular Biology of the Cell, 2001, 12, 3538-3549.	2.1	76
140	CAC3 (MSI1) Suppression of RAS2 G19V Is Independent of Chromatin Assembly Factor I and Mediated by NPR1. Molecular and Cellular Biology, 2001, 21, 1784-1794.	2.3	28
141	Filamentous Growth of Saccharomyces cerevisiae Is Regulated by Manganese. Fungal Genetics and Biology, 2000, 30, 155-162.	2.1	6
142	Identification of a Novel Allele of <i>SIR3</i> Defective in the Maintenance, but Not the Establishment, of Silencing in <i>Saccharomyces cerevisiae</i> Cenetics, 2000, 155, 523-538.	2.9	16
143	Effect of INT1 Gene on Candida albicans Murine Intestinal Colonization. Journal of Surgical Research, 1999, 87, 245-251.	1.6	38
144	Gbp1p, a Protein with RNA Recognition Motifs, Binds Single-Stranded Telomeric DNA and Changes Its Binding Specificity upon Dimerization. Molecular and Cellular Biology, 1999, 19, 923-933.	2.3	32

#	Article	IF	Citations
145	Response from Gale et al Trends in Microbiology, 1998, 6, 302-303.	7.7	1
146	Insertion of Telomere Repeat Sequence Decreases Plasmid DNA Condensation by Cobalt (III) Hexaammine. Biophysical Journal, 1998, 74, 1484-1491.	0.5	21
147	Linkage of Adhesion, Filamentous Growth, and Virulence in Candida albicans to a Single Gene, INT1. Science, 1998, 279, 1355-1358.	12.6	315
148	Chromatin assembly factor I contributes to the maintenance, but not the re-establishment, of silencing at the yeast silent mating loci. Genes and Development, 1998, 12, 219-232.	5.9	183
149	Telomere Length Regulation and Telomeric Chromatin Require the Nonsense-Mediated mRNA Decay Pathway. Molecular and Cellular Biology, 1998, 18, 6121-6130.	2.3	70
150	Yeast Ty1 Retrotransposition Is Stimulated by a Synergistic Interaction between Mutations in Chromatin Assembly Factor I and Histone Regulatory Proteins. Molecular and Cellular Biology, 1998, 18, 4783-4792.	2.3	62
151	Vectors for Expressing T7 Epitope- and His6 Affinity-Tagged Fusion Proteins in S. cerevisiae. BioTechniques, 1998, 24, 782-788.	1.8	14
152	RLF2, a subunit of yeast chromatin assembly factor-I, is required for telomeric chromatin function in vivo Genes and Development, 1997, 11, 358-370.	5.9	141
153	A class of single-stranded telomeric DNA-binding proteins required for Rap1p localization in yeast nuclei Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 5558-5562.	7.1	39
154	TEL+CEN antagonism on plasmids involves telomere repeat sequences tracts and gene products that interact with chromosomal telomeres. Chromosoma, 1994, 103, 237-250.	2.2	22
155	TEL+CEN antagonism on plasmids involves telomere repeat sequences tracts and gene products that interact with chromosomal telomeres. Chromosoma, 1994, 103, 237-250.	2.2	4
156	Chlamydomonas reinhardtiitelomere repeats form unstable structures involving guanine-guanine base pairs. Nucleic Acids Research, 1992, 20, 89-95.	14.5	17
157	Yeast telomere repeat sequence (TRS) improves circular plasmid segregation, and TRS plasmid segregation involves the RAP1 gene product Molecular and Cellular Biology, 1992, 12, 1997-2009.	2.3	61
158	Chlamydomonas telomere sequences are A+T-rich but contain three consecutive G-C base pairs Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 8222-8226.	7.1	88
159	A yeast Telomere Binding Activity binds to two related telomere sequence motifs and is indistinguishable from RAPT. Current Genetics, 1989, 16, 225-239.	1.7	189
160	[32] An agarose gel electrophoresis assay for the detection of DNA-binding activities in yeast cell extracts. Methods in Enzymology, 1987, 155, 528-537.	1.0	26
161	Identification of a telomere-binding activity from yeast Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 3713-3717.	7.1	115
162	Expression of a nitrogen-fixation gene encoding a nitrogenase subunit in yeast. Gene, 1985, 35, 1-9.	2.2	22

#	Article	lF	CITATIONS
163	Promoter mutations that allow nifA-independent expression of the nitrogen fixation nifHDKY operon Proceedings of the National Academy of Sciences of the United States of America, 1983, 80, 5812-5816.	7.1	12
164	Cell Cycle and Growth Control in <i>Candida</i> Species., 0,, 101-124.		1