Raymond J Macdonald

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6499803/publications.pdf

Version: 2024-02-01

39 papers 27,851 citations

172457 29 h-index 36 g-index

40 all docs

40 docs citations

40 times ranked

10111 citing authors

#	Article	IF	Citations
1	Concerted cell and in vivo screen for pancreatic ductal adenocarcinoma (PDA) chemotherapeutics. Scientific Reports, 2020, 10, 20662.	3.3	3
2	Prevention and Reversion of Pancreatic Tumorigenesis through a Differentiation-Based Mechanism. Developmental Cell, 2019, 50, 744-754.e4.	7.0	23
3	Developmental Molecular Biology of the Pancreas. , 2018, , 89-145.		3
4	Developmental Molecular Biology of the Pancreas. , 2016, , 1-57.		1
5	MIST1 and PTF1 Collaborate in Feed-Forward Regulatory Loops That Maintain the Pancreatic Acinar Phenotype in Adult Mice. Molecular and Cellular Biology, 2016, 36, 2945-2955.	2.3	38
6	Transcriptional Maintenance of Pancreatic Acinar Identity, Differentiation, and Homeostasis by PTF1A. Molecular and Cellular Biology, 2016, 36, 3033-3047.	2.3	80
7	MIST1 Links Secretion and Stress as both Target and Regulator of the Unfolded Protein Response. Molecular and Cellular Biology, 2016, 36, 2931-2944.	2.3	33
8	Isolated Pancreatic Aplasia Due to a Hypomorphic <i>PTF1A</i> Mutation. Diabetes, 2016, 65, 2810-2815.	0.6	22
9	The acinar differentiation determinant PTF1A inhibits initiation of pancreatic ductal adenocarcinoma. ELife, 2015, 4, .	6.0	128
10	The nuclear hormone receptor family member NR5A2 controls aspects of multipotent progenitor cell formation and acinar differentiation during pancreatic organogenesis. Development (Cambridge), 2014, 141, 3123-3133.	2.5	92
11	Dominant and context-specific control of endodermal organ allocation by Ptf1a. Development (Cambridge), 2014, 141, 4385-4394.	2.5	21
12	Program Specificity for Ptf1a in Pancreas versus Neural Tube Development Correlates with Distinct Collaborating Cofactors and Chromatin Accessibility. Molecular and Cellular Biology, 2013, 33, 3166-3179.	2.3	31
13	Induced Mist1 Expression Promotes Remodeling of Mouse Pancreatic Acinar Cells. Gastroenterology, 2012, 143, 469-480.	1.3	60
14	Pancreas-specific deletion of mouse Gata4 and Gata6 causes pancreatic agenesis. Journal of Clinical Investigation, 2012, 122, 3516-3528.	8.2	138
15	LRH-1 and PTF1-L coregulate an exocrine pancreas-specific transcriptional network for digestive function. Genes and Development, 2011, 25, 1674-1679.	5.9	91
16	Notch-Independent Functions of CSL. Current Topics in Developmental Biology, 2011, 97, 55-74.	2.2	39
17	Transcriptional Control of Acinar Development and Homeostasis. Progress in Molecular Biology and Translational Science, 2010, 97, 1-40.	1.7	40
18	Replacement of Rbpj With Rbpjl in the PTF1 Complex Controls the Final Maturation of Pancreatic Acinar Cells. Gastroenterology, 2010, 139, 270-280.	1.3	85

#	Article	IF	CITATIONS
19	Developmental Molecular Biology of the Pancreas. , 2010, , 71-117.		7
20	A nonclassical bHLH–Rbpj transcription factor complex is required for specification of GABAergic neurons independent of Notch signaling. Genes and Development, 2008, 22, 166-178.	5.9	116
21	Transcriptional Autoregulation Controls Pancreatic <i>Ptf1a</i> Expression during Development and Adulthood. Molecular and Cellular Biology, 2008, 28, 5458-5468.	2.3	93
22	Early pancreatic development requires the vertebrate Suppressor of Hairless (RBPJ) in the PTF1 bHLH complex. Genes and Development, 2007, 21, 2629-2643.	5.9	143
23	PTF1 Is an Organ-Specific and Notch-Independent Basic Helix-Loop-Helix Complex Containing the Mammalian Suppressor of Hairless (RBP-J) or Its Paralogue, RBP-L. Molecular and Cellular Biology, 2006, 26, 117-130.	2.3	190
24	The homeodomain protein PDX1 is required at mid-pancreatic development for the formation of the exocrine pancreas. Developmental Biology, 2005, 286, 225-237.	2.0	101
25	Notch inhibits Ptf1 function and acinar cell differentiation in developing mouse and zebrafish pancreas. Development (Cambridge), 2004, 131, 4213-4224.	2.5	196
26	Experimental control of pancreatic development and maintenance. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12236-12241.	7.1	214
27	Signaling and transcriptional control of pancreatic organogenesis. Current Opinion in Genetics and Development, 2002, 12, 540-547.	3.3	230
28	The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nature Genetics, 2002, 32, 128-134.	21.4	932
29	A candidate gene for human neurodegenerative disorders: a rat PKC \hat{I}^3 mutation causes a Parkinsonian syndrome. Nature Neuroscience, 2001, 4, 1061-1062.	14.8	36
30	The Role of PTF1-P48 in Pancreatic Acinar Gene Expression. Journal of Biological Chemistry, 2001, 276, 44018-44026.	3.4	95
31	DNA Binding and Transcriptional Activation by a PDX1Â-PBX1bÂ-MEIS2b Trimer and Cooperation with a Pancreas-specific Basic Helix-Loop-Helix Complex. Journal of Biological Chemistry, 2001, 276, 17985-17993.	3.4	63
32	Assessment of RNA Quality by Semi-Quantitative RT-PCR of Multiple Regions of a Long Ubiquitous mRNA. BioTechniques, 2000, 28, 524-531.	1.8	32
33	An Endocrine-Exocrine Switch in the Activity of the Pancreatic Homeodomain Protein PDX1 through Formation of a Trimeric Complex with PBX1b and MRG1 (MEIS2). Molecular and Cellular Biology, 1998, 18, 5109-5120.	2.3	161
34	Evolutionary Silencing of the Human Elastase I Gene (ELA1). Human Molecular Genetics, 1997, 6, 897-903.	2.9	44
35	The Expression of the Kallikrein Gene Family in the Rat Pituitary: Oestrogen Effects and the Expression of an Additional Family Member in the Neurointermediate Lobe. Journal of Neuroendocrinology, 1989, 1, 198-203.	2.6	13
36	[20] Isolation of RNA using guanidinium salts. Methods in Enzymology, 1987, 152, 219-227.	1.0	578

#	Article	IF	CITATIONS
37	Specific expression of an elastase–human growth hormone fusion gene in pancreatic acinar cells of transgenic mice. Nature, 1985, 313, 600-602.	27.8	253
38	Tissue-specific expression of the rat pancreatic elastase I gene in transgenic mice. Cell, 1984, 38, 639-646.	28.9	240
39	Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry, 1979, 18, 5294-5299.	2.5	23,186