Ken A Witt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6499376/publications.pdf Version: 2024-02-01

Κένι Δ \λλιττ

#	Article	IF	CITATIONS
1	NNC 26-9100 increases $A\hat{l}^2$ 1-42 phagocytosis, inhibits nitric oxide production and decreases calcium in BV2 microglia cells. PLoS ONE, 2021, 16, e0254242.	2.5	6
2	Synthesis and structure–activity relationships of 3,4,5-trisubstituted-1,2,4-triazoles: high affinity and selective somatostatin receptor-4 agonists for Alzheimer's disease treatment. RSC Medicinal Chemistry, 2021, 12, 1352-1365.	3.9	3
3	Novel Somatostatin Receptor-4 Agonist SM-I-26 Mitigates Lipopolysaccharide-Induced Inflammatory Gene Expression in Microglia. Neurochemical Research, 2021, , 1.	3.3	0
4	Somatostatin Receptor Subtype-4 Regulates mRNA Expression of Amyloid-Beta Degrading Enzymes and Microglia Mediators of Phagocytosis in Brains of 3xTg-AD Mice. Neurochemical Research, 2019, 44, 2670-2680.	3.3	15
5	P2â€052: SELECTIVE SOMATOSTATIN RECEPTOR SUBTYPEâ€4 AGONISTS FOR ALZHEIMER'S DISEASE TREATMEN Alzheimer's and Dementia, 2018, 14, P686.	Т _{.0.8}	0
6	Discovery of a 3,4,5-trisubstituted-1,2,4-triazole agonist with high affinity and selectivity at the somatostatin subtype-4 (sst ₄) receptor. MedChemComm, 2018, 9, 2083-2090.	3.4	7
7	Mfsd2a and Glut1 Brain Nutrient Transporters Expression Increase with 32-Week Low and High Lard Compared with Fish-Oil Dietary Treatment in C57Bl/6 Mice. Current Developments in Nutrition, 2018, 2, nzy065.	0.3	6
8	Peripheral Administration of GSK-3β Antisense Oligonucleotide Improves Learning and Memory in SAMP8 andÂTg2576 Mouse Models of Alzheimer's Disease. Journal of Alzheimer's Disease, 2016, 54, 1339-1348.	2.6	27
9	Steroids and the Blood–Brain Barrier. Advances in Pharmacology, 2014, 71, 361-390.	2.0	45
10	Somatostatin receptor subtype-4 agonist NNC 26-9100 mitigates the effect of soluble Aβ42 oligomers via a metalloproteinase-dependent mechanism. Brain Research, 2013, 1520, 145-156.	2.2	26
11	Somatostatin receptor subtype-4 agonist NNC 26–9100 decreases extracellular and intracellular Aβ1–42 trimers. European Journal of Pharmacology, 2012, 683, 116-124.	3.5	30
12	Synthesis of 2-Thiohydantoins as Somatostatin Subtype 4 Receptor Ligands. Letters in Drug Design and Discovery, 2012, 9, 655-662.	0.7	3
13	Age and 17β-estradiol effects on blood–brain barrier tight junction and estrogen receptor proteins in ovariectomized rats. Microvascular Research, 2011, 81, 198-205.	2.5	37
14	Chronic peripheral administration of somatostatin receptor subtype-4 agonist NNC 26-9100 enhances learning and memory in SAMP8 mice. European Journal of Pharmacology, 2011, 654, 53-59.	3.5	22
15	Blood-brain barrier tight junction permeability and ischemic stroke. Neurobiology of Disease, 2008, 32, 200-219.	4.4	821
16	Reoxygenation stress on blood–brain barrier paracellular permeability and edema in the rat. Microvascular Research, 2008, 75, 91-96.	2.5	57
17	CNS drug delivery: Opioid peptides and the blood-brain barrier. AAPS Journal, 2006, 8, E76-E88.	4.4	83
18	Hypoxia-inducible factor and nuclear factor kappa-B activation in blood-brain barrier endothelium under hypoxic/reoxygenation stress. Journal of Neurochemistry, 2005, 92, 203-214.	3.9	53

Ken A Witt

#	Article	IF	CITATIONS
19	Effects of hypoxia-reoxygenation on rat blood-brain barrier permeability and tight junctional protein expression. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H2820-H2831.	3.2	165
20	Pluronic P85 Block Copolymer Enhances Opioid Peptide Analgesia. Journal of Pharmacology and Experimental Therapeutics, 2002, 303, 760-767.	2.5	33
21	Peptide drug modifications to enhance bioavailability and blood-brain barrier permeability. Peptides, 2001, 22, 2329-2343.	2.4	214
22	Assessment of Stereoselectivity of Trimethylphenylalanine Analogues of δ-Opioid [D-Pen2,D-Pen5]-Enkephalin. Journal of Neurochemistry, 2001, 75, 424-435.	3.9	38