Stefan Bartram

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6498584/publications.pdf Version: 2024-02-01

STEEAN RADTDAM

#	Article	IF	CITATIONS
1	Tetranorsesquiterpenoids as Attractants of Yucca Moths to Yucca Flowers. Journal of Chemical Ecology, 2021, 47, 1025-1041.	1.8	7
2	Chromane Derivatives from Underground Parts of Iris tenuifolia and Their In Vitro Antimicrobial, Cytotoxicity and Antiproliferative Evaluation. Molecules, 2021, 26, 6705.	3.8	1
3	SpitWorm, a Herbivorous Robot: Mechanical Leaf Wounding with Simultaneous Application of Salivary Components. Plants, 2019, 8, 318.	3.5	12
4	Volatile DMNT systemically induces jasmonate-independent direct anti-herbivore defense in leaves of sweet potato (Ipomoea batatas) plants. Scientific Reports, 2019, 9, 17431.	3.3	40
5	Mechanistic studies of sesquiterpene cyclases based on their carbon isotope ratios at natural abundance. Plant, Cell and Environment, 2018, 41, 39-49.	5.7	5
6	One Pathway Is Not Enough: The Cabbage Stem Flea Beetle Psylliodes chrysocephala Uses Multiple Strategies to Overcome the Glucosinolate-Myrosinase Defense in Its Host Plants. Frontiers in Plant Science, 2018, 9, 1754.	3.6	30
7	Elevated Carbon Dioxide Concentration Reduces Alarm Signaling in Aphids. Journal of Chemical Ecology, 2017, 43, 164-171.	1.8	17
8	Coprophagous features in carnivorous Nepenthes plants: a task for ureases. Scientific Reports, 2017, 7, 11647.	3.3	12
9	In Vivo Isotopic Labeling of Symbiotic Bacteria Involved in Cellulose Degradation and Nitrogen Recycling within the Gut of the Forest Cockchafer (Melolontha hippocastani). Frontiers in Microbiology, 2017, 8, 1970.	3.5	28
10	Identification, quantification, spatiotemporal distribution and genetic variation of major latex secondary metabolites in the common dandelion (Taraxacum officinale agg.). Phytochemistry, 2015, 115, 89-98.	2.9	65
11	Biosynthesis of 8-hydroxyquinoline-2-carboxylic acid, an iron chelator from the gut of the lepidopteran Spodoptera littoralis. Organic and Biomolecular Chemistry, 2015, 13, 178-184.	2.8	12
12	In Vivo Pyro-SIP Assessing Active Gut Microbiota of the Cotton Leafworm, Spodoptera littoralis. PLoS ONE, 2014, 9, e85948.	2.5	86
13	Quantification of growth–defense tradeâ€offs in a common currency: nitrogen required for phenolamide biosynthesis is not derived from ribuloseâ€1,5â€bisphosphate carboxylase/oxygenase turnover. Plant Journal, 2013, 75, 417-429.	5.7	39
14	Silencing ribulose-1,5-bisphosphate carboxylase/oxygenase expression does not disrupt nitrogen allocation to defense after simulated herbivory in <i>Nicotiana attenuata</i> . Plant Signaling and Behavior, 2013, 8, e27570.	2.4	8
15	MAPK-dependent JA and SA signalling in Nicotiana attenuata affects plant growth and fitness during competition with conspecifics. BMC Plant Biology, 2012, 12, 213.	3.6	58
16	Determination of ¹⁵ N-Incorporation into Plant Proteins and their Absolute Quantitation: A New Tool to Study Nitrogen Flux Dynamics and Protein Pool Sizes Elicited by Plant–Herbivore Interactions. Journal of Proteome Research, 2012, 11, 4947-4960.	3.7	15
17	Aphid Alarm Pheromone as a Cue for Ants to Locate Aphid Partners. PLoS ONE, 2012, 7, e41841.	2.5	27
18	Plantâ€Inhabiting Ant Utilizes Chemical Cues for Host Discrimination. Biotropica, 2012, 44, 246-253.	1.6	11

Stefan Bartram

#	Article	IF	CITATIONS
19	Crystallization of α- and β-carotene in the foregut of Spodoptera larvae feeding on a toxic food plant. Insect Biochemistry and Molecular Biology, 2011, 41, 273-281.	2.7	27
20	Reductive dehalogenation of brominated ethenes by <i>Sulfurospirillum multivorans</i> and <i>Desulfitobacterium hafniense</i> PCEâ€S. Environmental Microbiology, 2010, 12, 501-509.	3.8	33
21	The Isogene 1-Deoxy-D-Xylulose 5-Phosphate Synthase 2 Controls Isoprenoid Profiles, Precursor Pathway Allocation, and Density of Tomato Trichomes. Molecular Plant, 2010, 3, 904-916.	8.3	125
22	Conservation priorities differ at opposing species borders of a European orchid. Biological Conservation, 2010, 143, 2207-2220.	4.1	30
23	Conformational Studies on the Δ ⁸ (<i>E</i> , <i>Z</i>)-Sphingolipid Desaturase from <i>Helianthus annuus</i> with Chiral Fluoropalmitic Acids As Mechanistic Probes. Journal of Organic Chemistry, 2010, 75, 4975-4982.	3.2	7
24	Aphid and Plant Volatiles Induce Oviposition in an Aphidophagous Hoverfly. Journal of Chemical Ecology, 2008, 34, 301-307.	1.8	125
25	Do Aphid Colonies Amplify their Emission of Alarm Pheromone?. Journal of Chemical Ecology, 2008, 34, 1149-1152.	1.8	33
26	Testing the optimal defence hypothesis for two indirect defences: extrafloral nectar and volatile organic compounds. Planta, 2008, 228, 449-457.	3.2	83
27	De novo biosynthesis versus sequestration: A network of transport systems supports in iridoid producing leaf beetle larvae both modes of defense. Insect Biochemistry and Molecular Biology, 2008, 38, 895-904.	2.7	40
28	Dynamic pathway allocation in early terpenoid biosynthesis of stress-induced lima bean leaves. Phytochemistry, 2006, 67, 1661-1672.	2.9	108
29	Chemistry and geographic variation of floral scent in <i>Yucca filamentosa</i> (Agavaceae). American Journal of Botany, 2005, 92, 1624-1631.	1.7	100
30	Biosynthesis of methionine-derived glucosinolates in Arabidopsis thaliana : recombinant expression and characterization of methylthioalkylmalate synthase, the condensing enzyme of the chain-elongation cycle. Planta, 2004, 218, 1026-1035.	3.2	109
31	Glucosinolate biosynthesis: demonstration and characterization of the condensing enzyme of the chain elongation cycle in Eruca sativa. Phytochemistry, 2004, 65, 1073-1084.	2.9	46
32	ARE IRIDOIDS IN LEAF BEETLE LARVAE SYNTHESIZEDDE NOVOOR DERIVED FROM PLANT PRECURSORS? A METHODOLOGICAL APPROACH*. Isotopes in Environmental and Health Studies, 2004, 40, 175-180.	1.0	15
33	The Arduous Way to the Egg: Follow the Nose. Angewandte Chemie - International Edition, 2003, 42, 4729-4731.	13.8	1
34	Phenylphenalenone-Related Compounds:Â Chemotaxonomic Markers of the Haemodoraceae fromXiphidium caeruleum. Journal of Natural Products, 2002, 65, 1122-1130.	3.0	41
35	Chemistry and Ecology of Toxic Birds. ChemBioChem, 2001, 2, 809.	2.6	20
36	A Gene Controlling Variation in Arabidopsis Glucosinolate Composition Is Part of the Methionine Chain Elongation Pathway. Plant Physiology, 2001, 127, 1077-1088.	4.8	233

#	Article	IF	CITATIONS
37	A Gene Controlling Variation in Arabidopsis Glucosinolate Composition Is Part of the Methionine Chain Elongation Pathway. Plant Physiology, 2001, 127, 1077-1088.	4.8	36
38	Tricarbonylchromâ€Komplexe von chiralen [2.2]Metacyclophanen: Darstellung, Struktur und chiroptische Eigenschaften. Chemische Berichte, 1992, 125, 2553-2569.	0.2	14