
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6496826/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-performance Gd0.5Sr0.5CoO3â^' and Ce0.8Gd0.2O1.9 nanocomposite cathode for achieving high power density in solid oxide fuel cells. Electrochimica Acta, 2021, 368, 137679.	5.2	9
2	Modification of sinterability and electrical property by Bi2O3 addition to La9.333Si6O26 for co-sintering with Gd0.1Ce0.9O1.95. Inorganic Chemistry Communication, 2020, 117, 107974.	3.9	1
3	Highly active and durable La0.4Sr0.6MnO3â^ and Ce0.8Gd0.2O1.9 nanocomposite electrode for high-temperature reversible solid oxide electrochemical cells. Ceramics International, 2020, 46, 19617-19623.	4.8	25
4	Influence of cation interdiffusion on electrical properties of doped ceria/lanthanum silicate composite. Ceramics International, 2020, 46, 20423-20428.	4.8	3
5	Degradation evaluation by distribution of relaxation times analysis for microtubular solid oxide fuel cells. Electrochimica Acta, 2020, 339, 135913.	5.2	84
6	Effect of Ni content on CO2 methanation performance with tubular-structured Ni-YSZ catalysts and optimization of catalytic activity for temperature management in the reactor. International Journal of Hydrogen Energy, 2020, 45, 12911-12920.	7.1	17
7	Low-temperature fabrication of (Ba,Sr)(Co,Fe)O ₃ cathode by the reactive sintering method. Journal of the Ceramic Society of Japan, 2019, 127, 485-490.	1.1	3
8	Development of co-sintering process for anode-supported solid oxide fuel cells with gadolinia-doped ceria/lanthanum silicate bi-layer electrolyte. International Journal of Hydrogen Energy, 2019, 44, 23377-23383.	7.1	12
9	Near room temperature synthesis of perovskite oxides. Ceramics International, 2019, 45, 24936-24940.	4.8	9
10	Nanocomposite electrodes for high current density over 3 A cmâ^'2 in solid oxide electrolysis cells. Nature Communications, 2019, 10, 5432.	12.8	79
11	A Key for Achieving Higher Open-Circuit Voltage in Protonic Ceramic Fuel Cells: Lowering Interfacial Electrode Polarization. ACS Applied Energy Materials, 2019, 2, 587-597.	5.1	28
12	Effect of Ni diffusion into BaZr0.1Ce0.7Y0.1Yb0.1O3â^' electrolyte during high temperature co-sintering in anode-supported solid oxide fuel cells. Ceramics International, 2018, 44, 3134-3140.	4.8	44
13	Dissociation behavior of protons incorporated in yttrium doped barium zirconate. Journal of Solid State Chemistry, 2017, 252, 22-27.	2.9	7
14	Extremely fine structured cathode for solid oxide fuel cells using Sr-doped LaMnO3 and Y2O3-stabilized ZrO2 nano-composite powder synthesized by spray pyrolysis. Journal of Power Sources, 2017, 341, 280-284.	7.8	34
15	Development of a Portable SOFC System with Internal Partial Oxidation Reforming of Butane and Steam Reforming of Ethanol. ECS Transactions, 2017, 80, 71-77.	0.5	7
16	Improved transport property of proton-conducting solid oxide fuel cell with multi-layered electrolyte structure. Journal of Power Sources, 2017, 364, 458-464.	7.8	22
17	Correlation between Dissolved Protons in Nickel-Doped BaZr _{0.1} Ce _{0.7} Y _{0.1} Yb _{0.1} O _{3â^î} and Its Electrical Conductive Properties. Inorganic Chemistry, 2017, 56, 11876-11882.	4.0	12
18	Internal Partial Oxidation Reforming of Butane and Steam Reforming of Ethanol for Anodeâ€supported Microtubular Solid Oxide Fuel Cells, Fuel Cells, 2017, 17, 875-881	2.4	14

#	Article	IF	CITATIONS
19	Decomposition reaction of BaZr _{0.1} Ce _{0.7} Y _{0.1} Yb _{0.1in carbon dioxide atmosphere with nickel sintering aid. Journal of the Ceramic Society of Japan, 2017, 125, 247-251.}	%gt;O<	sub>3&
20	Structural investigation of electrochemically active ceramic anodes for next-generation solid oxide fuel cells (SOFCs) and solid oxide electrolysis cells (SOECs). Journal of the Ceramic Society of Japan, 2017, 125, 851-855.	1.1	1
21	Effect of starting solution concentration in spray pyrolysis on powder properties and electrochemical electrode performance. Advanced Powder Technology, 2016, 27, 1438-1445.	4.1	6
22	High steam utilization operation with high current density in solid oxide electrolysis cells. Journal of the Ceramic Society of Japan, 2016, 124, 213-217.	1.1	5
23	Development of anode-supported electrochemical cell based on proton-conductive Ba(Ce,Zr)O3 electrolyte. Solid State Ionics, 2016, 288, 347-350.	2.7	17
24	High power density cell using nanostructured Sr-doped SmCoO3 and Sm-doped CeO2 composite powder synthesized by spray pyrolysis. Journal of Power Sources, 2016, 302, 308-314.	7.8	43
25	Challenge for lowering concentration polarization in solid oxide fuel cells. Journal of Power Sources, 2016, 302, 53-60.	7.8	60
26	Electrochemical and microstructural properties of Ni–(Y2O3)0.08(ZrO2)0.92–(Ce0.9Gd0.1)O1.95 anode-supported microtubular solid oxide fuel cells. Solid State Ionics, 2016, 285, 227-233.	2.7	19
27	Direct hydrocarbon utilization in microtubular solid oxide fuel cells. Journal of the Ceramic Society of Japan, 2015, 123, 213-216.	1.1	10
28	Fabrication and characterization of YSZ thin films for SOFC application. Journal of the Ceramic Society of Japan, 2015, 123, 250-252.	1.1	2
29	Proton conduction of MO-P2O5 glasses (MÂ=ÂZn, Ba) containing a large amount of water. Solid State Sciences, 2015, 45, 5-8.	3.2	14
30	Prevention of Reaction between (Ba,Sr)(Co,Fe)O3 Cathodes and Yttria-stabilized Zirconica Electrolytes for Intermediate-temperature Solid Oxide Fuel Cells. Electrochimica Acta, 2015, 184, 403-409.	5.2	24
31	Performance of Niâ€based Anode‣upported <scp>SOFC</scp> s with Doped Ceria Electrolyte at Low Temperatures Between 294 and 542°C. International Journal of Applied Ceramic Technology, 2015, 12, 358-362.	2.1	5
32	Nano-Composite Electrode Technology on Micro SOFC. Yosetsu Gakkai Shi/Journal of the Japan Welding Society, 2015, 84, 193-195.	0.1	0
33	Microtubular solid-oxide fuel cells for low-temperature operation. MRS Bulletin, 2014, 39, 805-809.	3.5	7
34	Conductive glass sealants with Ag nanoparticles prepared by a heat reduction process. Journal of Non-Crystalline Solids, 2014, 394-395, 22-28.	3.1	2
35	Effect of nanostructured anode functional layer thickness on the solid-oxide fuel cell performance in the intermediate temperature. International Journal of Hydrogen Energy, 2014, 39, 19731-19736.	7.1	27
36	Effects of anode microstructures on durability of microtubular solid oxide fuel cells during internal steam reforming of methane. Electrochemistry Communications, 2014, 49, 34-37.	4.7	12

#	Article	IF	CITATIONS
37	Evaluation of micro flat-tube solid-oxide fuel cell modules using simple gas heating apparatus. Journal of Power Sources, 2014, 272, 730-734.	7.8	7
38	Electrochemical analysis for anode-supported microtubular solid oxide fuel cells in partial reducing and oxidizing conditions. Solid State Ionics, 2014, 262, 407-410.	2.7	19
39	Reversible Performance of Anode-Supported Proton-Conductive Solid Oxide Cell in Lower Temperature Range. ECS Transactions, 2013, 57, 3249-3253.	0.5	1
40	Proton conductivities and structures of BaO–ZnO–P2O5 glasses in the ultraphosphate region for intermediate temperature fuel cells. International Journal of Hydrogen Energy, 2013, 38, 15354-15360.	7.1	8
41	Development of Microtubular SOFCs for Portable Power Sources. ECS Transactions, 2013, 57, 133-140.	0.5	1
42	Transmission Electron Microscopy Observation of Nickel-Yttria Stabilized Zirconia Catalyst for Solid Oxide Fuel Cells in Methane Atmosphere. ECS Transactions, 2013, 57, 1455-1462.	0.5	0
43	Investigation of the microstructural effect of Ni–yttria stabilized zirconia anode for solid-oxide fuel cell using micro-beam X-ray absorption spectroscopy analysis. Journal of Power Sources, 2013, 222, 15-20.	7.8	10
44	High performance of La0.6Sr0.4Co0.2Fe0.8O3–Ce0.9Gd0.1O1.95 nanoparticulate cathode for intermediate temperature microtubular solid oxide fuel cells. Journal of Power Sources, 2013, 226, 354-358.	7.8	74
45	Correlation between Protonic Conductivity and Structure of Phosphate Glasses for Intermediate Temperature Fuel Cells. ECS Transactions, 2013, 50, 187-191.	0.5	1
46	Experimental and Simulated Evaluations of Current Collection Losses in Anode-Supported Microtubular Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 2013, 160, F1232-F1236.	2.9	8
47	Effects of Anode Microstructure on Mechanical and Electrochemical Properties for Anode‣upported Microtubular Solid Oxide Fuel Cells. Journal of the American Ceramic Society, 2013, 96, 3584-3588.	3.8	24
48	Effect of Operating Temperature on Durability for Direct Butane Utilization of Microtubular Solid Oxide Fuel Cells. Electrochemistry, 2013, 81, 86-91.	1.4	10
49	Fabrication and Evaluation of Micro-Tubular SOFC Stack. ECS Transactions, 2012, 45, 531-534.	0.5	Ο
50	4.å°åž‹SOFCã,•ã,¹ãƒ†ãƒã®ç¾çжã•今後ã®å±•望. Electrochemistry, 2012, 80, 267-270.	1.4	0
51	Impact of direct butane microtubular solid oxide fuel cells. Journal of Power Sources, 2012, 220, 74-78.	7.8	37
52	Morphology control and electrochemical properties of LiFePO4/C composite cathode for lithium ion batteries. Solid State Ionics, 2012, 225, 560-563.	2.7	31
53	Influence of Air Utilization on Power Generation Properties of a Non-Combined Cycle Pressurized SOFC System. , 2012, , .		0
54	Application of catalytic layer on solid oxide fuel cell anode surface. Electrochemistry Communications, 2012, 15, 26-28.	4.7	1

#	Article	IF	CITATIONS
55	AC impedance characteristics for anode-supported microtubular solid oxide fuel cells. Electrochimica Acta, 2012, 67, 159-165.	5.2	96
56	One-step sintering process of gadolinia-doped ceria interlayer–scandia-stabilized zirconia electrolyte for anode supported microtubular solid oxide fuel cells. Journal of Power Sources, 2012, 199, 170-173.	7.8	18
57	Performance of Ni–Fe/gadolinium-doped CeO2 anode supported tubular solid oxide fuel cells using steam reforming of methane. Journal of Power Sources, 2012, 202, 225-229.	7.8	14
58	A reduced temperature solid oxide fuel cell with three-dimensionally ordered macroporous cathode. Journal of Power Sources, 2012, 212, 86-92.	7.8	8
59	Low temperature densification process of solid-oxide fuel cell electrolyte controlled by anode support shrinkage. RSC Advances, 2011, 1, 911.	3.6	17
60	Development of Bi-Metal Anode Microtubular Supports for Solid Oxide Fuel Cells. Journal of Fuel Cell Science and Technology, 2011, 8, .	0.8	2
61	Performance of Microtubular SOFCs Using Ethanol Fuel. Journal of Fuel Cell Science and Technology, 2011, 8, .	0.8	1
62	A functional layer for direct use of hydrocarbonfuel in low temperature solid-oxidefuelcells. Energy and Environmental Science, 2011, 4, 940-943.	30.8	64
63	Power Generation Properties of Microtubular Solid Oxide Fuel Cell Bundle Under Pressurized Conditions. Journal of Fuel Cell Science and Technology, 2011, 8, .	0.8	7
64	Investigation of shrinkage behavior of Ni–Fe bimetallic anode tube support and the densification of electrolyte using co-sintering temperature. Journal of Power Sources, 2011, 196, 9124-9129.	7.8	5
65	Effect of anode functional layer on energy efficiency of solid oxide fuel cells. Electrochemistry Communications, 2011, 13, 959-962.	4.7	25
66	Effect of the adding ferrum in nickel/GDC anode-supported solid-oxide fuel cell in the intermediate temperature. International Journal of Hydrogen Energy, 2011, 36, 10975-10980.	7.1	6
67	Low temperature processed composite cathodes for Solid-oxide fuel Cells. International Journal of Hydrogen Energy, 2011, 36, 10998-11003.	7.1	10
68	Development of novel micro flat-tube solid-oxide fuel cells. Electrochemistry Communications, 2011, 13, 719-722.	4.7	18
69	Energy efficiency of a microtubular solid-oxide fuel cell. Journal of Power Sources, 2011, 196, 5485-5489.	7.8	10
70	Anode-Supported Tubular SOFC at Low Temperature Using Ni, Fe, GDC, and YSZ Based Anode Support. ECS Transactions, 2011, 35, 705-711.	0.5	0
71	Performance and Energy Efficiency of a Microtubular Solid Oxide Fuel Cell. ECS Transactions, 2011, 35, 425-430.	0.5	1
72	Tubular Solid Oxide Electrolysis Cell for NOx Decomposition. Journal of the Electrochemical Society, 2011, 158, B1050.	2.9	10

#	Article	IF	CITATIONS
73	Challenge for the development of micro SOFC manufacturing technology. Synthesiology, 2011, 4, 36-45.	0.2	3
74	Shrinkage Control of the Sealing Layer for the Cube-Type Solid Oxide Fuel Cell Bundle. Journal of Fuel Cell Science and Technology, 2010, 7, .	0.8	0
75	Novel Electrode-Supported Honeycomb Solid Oxide Fuel Cell: Design and Fabrication. Journal of Fuel Cell Science and Technology, 2010, 7, .	0.8	4
76	Simulation Study for the Series Connected Bundles of Microtubular SOFCs. Journal of Fuel Cell Science and Technology, 2010, 7, .	0.8	3
77	Fabrication of micro-tubular solid oxide fuel cells with a single-grain-thick yttria stabilized zirconia electrolyte. Journal of Power Sources, 2010, 195, 7825-7828.	7.8	31
78	Simulation Study for the Optimization of Microtubular Solid Oxide Fuel Cell Bundles. Journal of Fuel Cell Science and Technology, 2010, 7, .	0.8	13
79	Recent Development of Microceramic Reactors for Advanced Ceramic Reactor System. Journal of Fuel Cell Science and Technology, 2010, 7, .	0.8	11
80	Development of Fabrication/Integration Technology for Micro Tubular SOFCs. , 2009, , 141-177.		3
81	200 W Module Design using Micro Tubular SOFCs. ECS Transactions, 2009, 25, 195-200.	0.5	3
82	Effect of Cathode Porosity on the Performances of Cathode Supported Honeycomb SOFCs. ECS Transactions, 2009, 25, 975-981.	0.5	4
83	Effect of Anode Composition on the Performances of Cathode Supported Micro Channel SOFCs. ECS Transactions, 2009, 25, 939-943.	0.5	3
84	Effects of Anode Microstructure on the Performances of Cathode-Supported Micro-SOFCs. Electrochemical and Solid-State Letters, 2009, 12, B151.	2.2	8
85	Performance of the Micro-SOFC Module Using Submillimeter Tubular Cells. Journal of the Electrochemical Society, 2009, 156, B318.	2.9	15
86	Hydrothermal synthesis of Sr–Ce–Sn–Mn–O mixed oxidic/stannate pyrochlore and its catalytic performance for NO reduction. Materials Chemistry and Physics, 2009, 116, 273-278.	4.0	19
87	Fabrication and evaluation of a novel cathode-supported honeycomb SOFC stack. Materials Letters, 2009, 63, 2577-2580.	2.6	16
88	Wet Atomisation of Gdâ€doped CeO ₂ Electrolyte Slurries for Intermediate Temperatures' Microtubular SOFC Applications. Fuel Cells, 2009, 9, 164-169.	2.4	11
89	New Fabrication Technique for Seriesâ€Connected Stack With Micro Tubular SOFCs. Fuel Cells, 2009, 9, 711-716.	2.4	7
90	Effect of anode microstructure on the performance of micro tubular SOFCs. Solid State Ionics, 2009, 180, 546-549.	2.7	37

#	Article	IF	CITATIONS
91	Electrochemical reactors for NO decomposition. Basic aspects and a future. Ionics, 2009, 15, 285-299.	2.4	25
92	Design and Fabrication of a Novel Electrode-Supported Honeycomb SOFC. Journal of the American Ceramic Society, 2009, 92, S107-S111.	3.8	22
93	A Slurry Injection Method for the Fabrication of Multiple Microchannel SOFCs. Journal of the American Ceramic Society, 2009, 92, 1002-1005.	3.8	3
94	Study of steam electrolysis using a microtubular ceramic reactor. International Journal of Hydrogen Energy, 2009, 34, 1159-1165.	7.1	32
95	Perovskites with cotton-like morphology consisting of nanoparticles and nanorods: Their synthesis by the combustion method and their NOx adsorption behavior. Applied Catalysis A: General, 2009, 361, 86-92.	4.3	13
96	Evaluation of extruded cathode honeycomb monolith-supported SOFC under rapid start-up operation. Electrochimica Acta, 2009, 54, 1478-1482.	5.2	21
97	Impact of Anode Microstructure on Solid Oxide Fuel Cells. Science, 2009, 325, 852-855.	12.6	423
98	Synthesis and characterization of Sm3+-doped Y(OH)3 and Y2O3 nanowires and their NO reduction activity. Journal of Alloys and Compounds, 2009, 476, 335-340.	5.5	17
99	Low Temperature Operated SOFCs Using Ceria Based Electrolyte. Electrochemistry, 2009, 77, 134-136.	1.4	2
100	Development of Novel Honeycomb SOFCs for Intermediate Temperature Operation. Electrochemistry, 2009, 77, 137-139.	1.4	0
101	Effect of microstructure on the conductivity of porous (La0.8Sr0.2)0.99MnO3. Journal of the Ceramic Society of Japan, 2009, 117, 895-898.	1.1	4
102	Development of a Dense Electrolyte Thin Film by the Inkâ€Jet Printing Technique for a Porous LSM Substrate. Journal of the American Ceramic Society, 2008, 91, 346-349.	3.8	23
103	Development of cube-type SOFC stacks using anode-supported tubular cells. Journal of Power Sources, 2008, 175, 68-74.	7.8	25
104	New Stack Design of Microâ€ŧubular SOFCs for Portable Power Sources. Fuel Cells, 2008, 8, 381-384.	2.4	17
105	The electrochemical cell temperature estimation of micro-tubular SOFCs during the power generation. Journal of Power Sources, 2008, 181, 244-250.	7.8	19
106	Cube-type micro SOFC stacks using sub-millimeter tubular SOFCs. Journal of Power Sources, 2008, 183, 544-550.	7.8	36
107	Non-alkaline glass–MgO composites for SOFC sealant. Journal of Power Sources, 2008, 185, 1311-1314.	7.8	33
108	Gas sensing property of the electrochemical cell with a multilayer catalytic electrode. Solid State Ionics, 2008, 179, 1648-1651.	2.7	4

#	Article	IF	CITATIONS
109	Fabrication and characterization of high performance cathode supported small-scale SOFC for intermediate temperature operation. Electrochemistry Communications, 2008, 10, 1381-1383.	4.7	56
110	Fabrication of needle-type micro SOFCs for micro power devices. Electrochemistry Communications, 2008, 10, 1563-1566.	4.7	39
111	Fabrication and evaluation of cathode-supported small scale SOFCs. Materials Letters, 2008, 62, 1518-1520.	2.6	35
112	Development of Microtubular SOFCs. Journal of Fuel Cell Science and Technology, 2008, 5, .	0.8	6
113	Development of Evaluation Technologies for Microtubular SOFCs Under Pressurized Conditions. Journal of Fuel Cell Science and Technology, 2008, 5, .	0.8	13
114	Fabrication and characterization of micro tubular SOFCs for advanced ceramic reactors. Journal of Alloys and Compounds, 2008, 451, 632-635.	5.5	40
115	Effects of Pressurization on Cell Performance of a Microtubular SOFC with Sc-Doped Zirconia Electrolyte. Journal of the Electrochemical Society, 2008, 155, B587.	2.9	20
116	Fabrication and Characterization of Microtubular SOFCs with Multilayered Electrolyte. Electrochemical and Solid-State Letters, 2008, 11, B87.	2.2	13
117	Demonstration of the Rapid Start-Up Operation of Cathode-Supported SOFCs Using a Microtubular LSM Support. Journal of the Electrochemical Society, 2008, 155, B1141.	2.9	12
118	Recent Development of Micro Ceramic Reactors for Advanced Ceramic Reactor System. , 2008, , .		0
119	Evaluation of Micro LSM-Supported GDC/ScSZ Bilayer Electrolyte with LSM–GDC Activation Layer for Intermediate Temperature-SOFCs. Journal of the Electrochemical Society, 2008, 155, B423.	2.9	33
120	Development and Evaluation of a Cathode-Supported SOFC Having a Honeycomb Structure. Electrochemical and Solid-State Letters, 2008, 11, B117.	2.2	20
121	Low-Temperature NO[sub x] Decomposition Using an Electrochemical Reactor. Journal of the Electrochemical Society, 2008, 155, E109.	2.9	32
122	Effect of the Fuel Flow Rate on the Performance of the Chip-Type SOFC Module. Journal of the Electrochemical Society, 2008, 155, B1296.	2.9	2
123	Design and Fabrication of Novel Electrode-Supported SOFC Having Honeycomb Structure. , 2008, , .		0
124	Power Generation Properties of a Micro Tubular SOFC Bundle Under Pressurized Conditions. , 2008, , .		0
125	The Properties and Performance of Micro-Tubular (Less Than 1 mm OD) Anode Supported SOFC for APU-Applications. NATO Science for Peace and Security Series C: Environmental Security, 2008, , 391-406.	0.2	0
126	Reduction and Reoxidation Reaction of Catalytic Layers in Electrochemical Cells for NO[sub x] Decomposition. Journal of the Electrochemical Society, 2007, 154, F172.	2.9	9

#	Article	IF	CITATIONS
127	Development of Honeycomb-type SOFCs with Accumulated Multi Micro-cells. ECS Transactions, 2007, 7, 657-662.	0.5	5
128	Cell Performance of Microtubular SOFCs with Sc-Doped Zirconia Electrolyte under Pressurized Conditions. ECS Transactions, 2007, 7, 597-601.	0.5	2
129	Development of the Stacked Micro SOFC Modules using New Approaches of Ceramic Processing Technology ECS Transactions, 2007, 7, 497-501.	0.5	2
130	Fabrication and Characterization of Stacked SOFCs Using Rapid Fabrication Technique. ECS Transactions, 2007, 7, 639-642.	0.5	0
131	Fabrication and Properties of Honeycomb-type SOFCs Accumulated with Multi Micro-cells. ECS Transactions, 2007, 7, 651-656.	0.5	5
132	Optimization of Configuration for Cube-Shaped SOFC Bundles. ECS Transactions, 2007, 7, 643-649.	0.5	13
133	Design and Fabrication of Lightweight, Submillimeter Tubular Solid Oxide Fuel Cells. Electrochemical and Solid-State Letters, 2007, 10, A177.	2.2	58
134	Polarization Properties of an Intermediate Temperature Operated Ceramic Reactor in Power Generating Mode. ECS Transactions, 2007, 7, 609-613.	0.5	5
135	Fabrication of Micro-Tubular SOFC Stack Using Ceramic Manifold. ECS Transactions, 2007, 7, 477-482.	0.5	1
136	Development of micro-tubular SOFCs with an improved performance via nano-Ag impregnation for intermediate temperature operation. Electrochemistry Communications, 2007, 9, 1918-1923.	4.7	55
137	Fabrication and characterization of components for cube shaped micro tubular SOFC bundle. Journal of Power Sources, 2007, 163, 731-736.	7.8	114
138	Anode-supported micro tubular SOFCs for advanced ceramic reactor system. Journal of Power Sources, 2007, 171, 92-95.	7.8	40
139	Current collecting efficiency of micro tubular SOFCs. Journal of Power Sources, 2007, 163, 737-742.	7.8	68
140	Examination of wet coating and co-sintering technologies for micro-SOFCs fabrication. Journal of Membrane Science, 2007, 300, 45-50.	8.2	75
141	Intermediate Temperature Electrochemical Reactor for NO[sub x] Decomposition. Journal of the Electrochemical Society, 2006, 153, D167.	2.9	17
142	Simultaneous removal of nitrogen oxides and diesel soot particulate in nano-structured electrochemical reactor. Solid State Ionics, 2006, 177, 2297-2300.	2.7	14
143	Fabrication and characterization of micro tubular SOFCs for operation in the intermediate temperature. Journal of Power Sources, 2006, 160, 73-77.	7.8	148
144	Multilayered electrochemical cell for NOx decomposition at moderate temperatures. Ionics, 2006, 12, 211-213.	2.4	2

#	Article	IF	CITATIONS
145	Fabrication and Fuel Cell Properties of Gd-Doped CeO ₂ Micro-Tube Ceramics Reactors Prepared by Gel Precursor. Key Engineering Materials, 2006, 317-318, 909-912.	0.4	1
146	Improvement of SOFC Performance Using a Microtubular, Anode-Supported SOFC. Journal of the Electrochemical Society, 2006, 153, A925.	2.9	77
147	Effect of grain boundaries on the magnetoresistance of magnetite. Physical Review B, 2005, 72, .	3.2	46
148	Pt-YSZ Cathode for Electrochemical Cells with Multilayer Functional Electrode. Journal of the Electrochemical Society, 2004, 151, J95.	2.9	10
149	Advance in Nanostructural Electrochemical Reactors for NOX Treatment in the Presence of Oxygen Materials Research Society Symposia Proceedings, 2004, 835, K9.1.1.	0.1	0
150	Synthesis and thermoelectric characterization of polycrystalline Ni1-xCaxCo2O4(x=0–0.05) spinel materials. Journal of Materials Science: Materials in Electronics, 2004, 15, 769-773.	2.2	29
151	High Selective deNOx Electrochemical Cell with Self-Assembled Electro-Catalytic Electrode. Journal of Electroceramics, 2004, 13, 865-870.	2.0	6
152	Preparation and compressive strength of α-tricalcium phosphate based cement dispersed with ceramic particles. Ceramics International, 2004, 30, 199-203.	4.8	20
153	Characterization of Thermoelectric Metal Oxide Elements Prepared by the Pulse Electric urrent Sintering Method. Journal of the American Ceramic Society, 2004, 87, 1890-1894.	3.8	17
154	Advances in Nano‧tructured Electrochemical Reactors for NO _x Treatment in the Presence of Oxygen. International Journal of Applied Ceramic Technology, 2004, 1, 277-286.	2.1	12
155	Synthesis and photocatalytic properties of fibrous titania by solvothermal reactions. Journal of Materials Processing Technology, 2003, 137, 45-48.	6.3	66
156	Effect of Microstructural Control on Thermoelectric Properties of Hotâ€Pressed Aluminumâ€Doped Zinc Oxide. Journal of the American Ceramic Society, 2003, 86, 2063-2066.	3.8	31
157	Fabrication of Electrode-Supported Type Electrochemical Cell for NOx Decomposition Journal of the Ceramic Society of Japan, 2002, 110, 591-596.	1.3	7
158	Preparation and Photoactive Characterization of Tube-shaped Al-doped ZnO Ceramics Materials Research Society Symposia Proceedings, 2002, 737, 545.	0.1	0
159	Thermoelectric characterization of NaxMx/2Ti1â^'x/2O2 (M=Co, Ni and Fe) polycrystalline materials. Ceramics International, 2002, 28, 841-845.	4.8	4
160	Synthesis and microstructure of calcia doped ceria as UV filters. Journal of Materials Science, 2002, 37, 683-687.	3.7	128
161	In situ microscopic observation of the formation process of pinning centers in Nd–Ba–Cu–O superconductor. Physica C: Superconductivity and Its Applications, 2001, 357-360, 738-742.	1.2	1
162	Synthesis of cadmium sulfide pillared layered compounds and photocatalytic reduction of nitrate under visible light irradiation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 179, 139-144.	4.7	55

#	Article	IF	CITATIONS
163	Coating of hydroxyapatite on various substrates via hydrothermal reactions of Ca(edta)2- and phosphate. Journal of Materials Science: Materials in Medicine, 2001, 12, 333-337.	3.6	20
164	Preparation and characterization of the Sb-doped TiO2 photocatalysts. Journal of Materials Science, 2001, 36, 949-955.	3.7	149
165	Solvo-thermal synthesis of layered Cu-based superconductors using EDTA chelate precursor. Physica C: Superconductivity and Its Applications, 2000, 341-348, 519-520.	1.2	1
166	Microstructure control of an oxide superconductor on interaction of pinning centers and growing crystal surface. Physica C: Superconductivity and Its Applications, 2000, 341-348, 2017-2018.	1.2	4
167	Synthesis and Photocatalytic Properties of TiO2 Intercalated H4Nb6O17. Molecular Crystals and Liquid Crystals, 2000, 341, 231-236.	0.3	2
168	Synthesis and Photocatalytic Property of Hectorite/(Pt, TiO2) and H4Nb6O17/(Pt, TiO2) Nanocomposites. Molecular Crystals and Liquid Crystals, 2000, 341, 213-218.	0.3	4
169	Preparation and compressive strength of calcium phosphate based cement dispersed with polycrystalline ceria doped tetragonal zirconia. Advances in Applied Ceramics, 1999, 98, 141-145.	0.4	4
170	High-pressure form of(VO)2P2O7: A spin-12antiferromagnetic alternating-chain compound with one kind of chain and a single spin gap. Physical Review B, 1999, 60, 10145-10149.	3.2	43
171	Synthesis and photocatalytic properties of HNbWO6/TiO2 and HNbWO6/Fe2O3 nanocomposites. Journal of Photochemistry and Photobiology A: Chemistry, 1999, 128, 129-133.	3.9	35
172	Structural Study of the Quantum-Spin Chain Compound (VO)2P2O7. Journal of Solid State Chemistry, 1999, 146, 369-379.	2.9	39
173	Synthesis of nanocrystalline manganese oxide powders: Influence of hydrogen peroxide on particle characteristics. Journal of Materials Research, 1999, 14, 4594-4601.	2.6	59
174	Phase transformation of protonic layered tetratitanate under solvothermal conditions. Journal of Materials Chemistry, 1999, 9, 1191-1195.	6.7	62
175	Synthesis and photochemical properties of semiconductor pillared layered compounds. Solid State Sciences, 1999, 1, 67-72.	0.7	55
176	Synthesis and photocatalytic properties of HTaWO6/(Pt,TiO2) and HTaWO6/(Pt,Fe2O3) nanocomposites. Solid State Sciences, 1999, 1, 253-258.	0.7	22
177	Preparation of porous ceria doped tetragonal zirconia ceramics by capsule free hot isostatic pressing. Advances in Applied Ceramics, 1999, 98, 19-23.	0.4	5
178	Coating of CaTiO3 on titanium substrates by hydrothermal reactions using calcium-ethylene diamine tetra acetic acid chelate. Journal of Materials Science: Materials in Medicine, 1998, 9, 363-367.	3.6	36
179	Hydrothermal synthesis of K4Nb6O17. Journal of Materials Science, 1998, 33, 5125-5129.	3.7	47
180	Nuclear magnetic resonance in the ladder system Sr(ZnxCu1 â^' x)2O3. Journal of Magnetism and Magnetic Materials, 1998, 177-181, 628-629.	2.3	1

#	Article	IF	CITATIONS
181	Characterization of ceria and yttria co-doped zirconia/alumina composites crystallized in supercritical methanol. Journal of Supercritical Fluids, 1998, 13, 363-368.	3.2	9
182	Synthesis and photocatalytic properties of titania pillared H4Nb6O17 using titanyl acylate precursor. Journal of Materials Chemistry, 1998, 8, 2835-2838.	6.7	32
183	Crystallization of titania in liquid media and photochemical properties of crystallized titania. Journal of Materials Research, 1998, 13, 844-847.	2.6	73
184	Intercalation of titanium oxide in layered H2Ti4O9 and H4Nb6O17 and photocatalytic water cleavage with H2Ti4O9/(TiO2, Pt) and H4Nb6O17/(TiO2, Pt) nanocomposites. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 3229-3234.	1.7	138
185	Synthesis of monodispersed LaPO4 particles using the hydrothermal reaction of an La(edta)â^' chelate precursor and phosphate ions. Journal of Alloys and Compounds, 1997, 252, 103-109.	5.5	54
186	Quantitative rates of in vivo bone generation for Bioglass and hydroxyapatite particles as bone graft substitute. Journal of Materials Science: Materials in Medicine, 1997, 8, 649-652.	3.6	43
187	Quantitative comparison of in vivo bone generation with particulate bioglass® and hydroxyapatite as a bone graft substitute. , 1997, , 283-286.		4
188	Intercalation of iron oxide in layered H2Ti4O9 and H4Nb6O17: visible-light induced photocatalytic properties. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 5089.	1.7	92
189	Photocatalytic Properties of Layered Hydrous Titanium Oxide/CdS-ZnS Nanocomposites IncorporatingCdS-ZnS into the Interlayer. Journal of Chemical Technology and Biotechnology, 1996, 67, 339-344.	3.2	59
190	Photochemical Reduction of Nitrate to Ammonia Using Layered Hydrous Titanate/Cadmium Sulphide Nanocomposites. Journal of Chemical Technology and Biotechnology, 1996, 67, 345-349.	3.2	26
191	Coating of Hydroxyapatite on Titanium Plates Using Thermal Dissociation of Calcium-EDTA Chelate Complex in Phosphate Solutions under Hydrothermal Conditions. Journal of Colloid and Interface Science, 1995, 173, 119-127.	9.4	50
192	Coating of hydroxyapatite on metal plates using thermal dissociation of calcium-EDTA chelate in phosphate solutions under hydrothermal conditions. Journal of Materials Science: Materials in Medicine, 1995, 6, 172-176.	3.6	58
193	Homogeneous Precipitation of Transition Metal (Co ²⁺ , Fe ²⁺ ,) Tj ETQq1 1 0.784314 Polyaminocarboxylate Complex as a Precursor. Phosphorus Research Bulletin, 1994, 4, 1-6.	rgBT /Ove 0.6	rlock 10 Tf 5 4
194	Preparation of needleâ€like hydroxyapatite by homogeneous precipitation under hydrothermal conditions. Journal of Chemical Technology and Biotechnology, 1993, 57, 349-353.	3.2	83
195	Thermoelectric properties of oxides Ca/sub 2/Co/sub 2/O/sub 5/ with Cr substitution. , 0, , .		0
196	Thermal conductivity control of ZnO thermoelectric ceramics using hot-pressing method. , 0, , .		0
197	Formation of Gas Sealing and Current Collecting Layers for Honeycomb-Type SOFCs. Ceramic Engineering and Science Proceedings, 0, , 72-78.	0.1	0
198	Effects of Compositions and Microstructures of Thin Anode Layer on the Performance of Honeycomb SOFCs Accumulated with Multi Micro Channel Cells. Ceramic Engineering and Science Proceedings, 0, , 65-70.	0.1	0

12

#	Article	IF	CITATIONS
199	The Properties and Performance of Micro-Tubular (Less than 1mm OD) Anode Supported Solid Oxide Fuel Cells. Ceramic Engineering and Science Proceedings, 0, , 29-39.	0.1	0
200	Development of Honeycomb-Type SOFC Integrated with Multi Micro Cells: Concept and Simulations. , 0, , 49-58.		0
201	Microstructure Control of Cathode Matrices for the Cube-Type SOFC Bundles. , 0, , 195-202.		0
202	Fabrication and Optimization of Micro Tubular SOFCs for Cube-Type SOFC Stacks. , 0, , 25-32.		0
203	Development of Fabrication Technology for Honeycomb-Type SOFC with Integrated Multi Micro-Cells. , 0, , 41-47.		0
204	Electrochemical Evaluation of Micro-Tubular SOFC and Module for Advanced Ceramic Reactor. , 0, , 33-40.		1