Xue-Peng Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6496725/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Continuous transition from double-layer to Faradaic charge storage in confined electrolytes. Nature Energy, 2022, 7, 222-228.	39.5	130
2	Ultrafast dynamics of spin relaxation in monolayer WSe ₂ and the WSe ₂ /graphene heterojunction. Physical Chemistry Chemical Physics, 2022, 24, 16538-16544.	2.8	3
3	Nucleation Dynamics of Phaseâ€Change Memory Materials: Atomic Motion and Property Evolution. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2000441.	2.4	5
4	Demystifying the Stern layer at a metal–electrolyte interface: Local dielectric constant, specific ion adsorption, and partial charge transfer. Journal of Chemical Physics, 2021, 154, 124701.	3.0	15
5	Highâ€Throughput Screening for Phaseâ€Change Memory Materials. Advanced Functional Materials, 2021, 31, 2009803.	14.9	43
6	Controllable molecular doping in organic single crystals toward high-efficiency light-emitting devices. Organic Electronics, 2021, 91, 106089.	2.6	7
7	Phaseâ€Changeâ€Memory Process at the Limit: A Proposal for Utilizing Monolayer Sb ₂ Te ₃ . Advanced Science, 2021, 8, 2004185.	11.2	25
8	Electronic structure evolution and exciton energy shifting dynamics in WSe ₂ : from monolayer to bulk. Journal Physics D: Applied Physics, 2021, 54, 354002.	2.8	4
9	Orbital-selective electronic excitation in phase-change memory materials: a brief review. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2021, .	0.7	0
10	Theoretical Insights into MXene Termination and Surface Charge Regulation. Journal of Physical Chemistry C, 2021, 125, 21771-21779.	3.1	10
11	Mexican-hat potential energy surface in two-dimensional III2-VI3 materials and the importance of entropy barrier in ultrafast reversible ferroelectric phase change. Applied Physics Reviews, 2021, 8, .	11.3	13
12	First-principles research on mechanism of sub-band absorption of amorphous silicon induced by ultrafast laser irradiation. Results in Physics, 2021, 31, 104941.	4.1	2
13	Nanoscale amorphous interfaces in phase-change memory materials: structure, properties and design. Journal Physics D: Applied Physics, 2020, 53, 114002.	2.8	4
14	Optical subpicosecond nonvolatile switching and electron-phonon coupling in ferroelectric materials. Physical Review B, 2020, 102, .	3.2	9
15	Time-dependent density-functional theory molecular-dynamics study on amorphization of Sc-Sb-Te alloy under optical excitation. Npj Computational Materials, 2020, 6, .	8.7	32
16	Stability enhancement of the metastable cubic Sb2Te3 in supperlattice-like films. Materials Letters, 2019, 243, 153-156.	2.6	4
17	Highâ€Colorâ€Rendering and Highâ€Efficiency White Organic Lightâ€Emitting Devices Based on Doubleâ€Doped Organic Single Crystals. Advanced Functional Materials, 2019, 29, 1807606.	14.9	42
18	Investigating the dynamics of excitons in monolayer WSe ₂ before and after organic super acid treatment. Nanoscale, 2018, 10, 9346-9352.	5.6	12

XUE-PENG WANG

#	Article	IF	CITATIONS
19	Electric field analyses on monolayer semiconductors: the example of InSe. Physical Chemistry Chemical Physics, 2018, 20, 6945-6950.	2.8	46
20	Metal–Insulator Transition of Ge–Sb–Te Superlattice: An Electron Counting Model Study. IEEE Nanotechnology Magazine, 2018, 17, 140-146.	2.0	31
21	Directional Forces by Momentumless Excitation and Order-to-Order Transition in Peierls-Distorted Solids: The Case of GeTe. Physical Review Letters, 2018, 120, 185701.	7.8	38
22	Black Silicon IR Photodiode Supersaturated With Nitrogen by Femtosecond Laser Irradiation. IEEE Sensors Journal, 2018, 18, 3595-3601.	4.7	25
23	Strong electron-polarized atom chain in amorphous phase-change memory Ge Sb Te alloy. Acta Materialia, 2018, 143, 102-106.	7.9	24
24	Phaseâ€Change Superlattice Materials toward Low Power Consumption and High Density Data Storage: Microscopic Picture, Working Principles, and Optimization. Advanced Functional Materials, 2018, 28, 1803380.	14.9	119
25	Clarification of the Molecular Doping Mechanism in Organic Singleâ€Crystalline Semiconductors and their Application in Colorâ€Tunable Lightâ€Emitting Devices. Advanced Materials, 2018, 30, e1801078.	21.0	53
26	Erratum to "Metal–Insulator Transition of Ge–Sb–Te Superlattice: An Electron Counting Model Study―[Jan 18 140-146]. IEEE Nanotechnology Magazine, 2018, 17, 614-614.	2.0	0
27	Non-phase-separated 2D B–C–N alloys <i>via</i> molecule-like carbon doping in 2D BN: atomic structures and optoelectronic properties. Physical Chemistry Chemical Physics, 2018, 20, 23106-23111.	2.8	6
28	Highly Efficient Three Primary Color Organic Singleâ€Crystal Lightâ€Emitting Devices with Balanced Carrier Injection and Transport. Advanced Functional Materials, 2017, 27, 1604659.	14.9	69
29	Giant lattice expansion by quantum stress and universal atomic forces in semiconductors under instant ultrafast laser excitation. Physical Chemistry Chemical Physics, 2017, 19, 24735-24741.	2.8	7
30	Element-specific amorphization of vacancy-ordered GeSbTe for ternary-state phase change memory. Acta Materialia, 2017, 136, 242-248.	7.9	30
31	Vacancy Structures and Melting Behavior in Rock-Salt GeSbTe. Scientific Reports, 2016, 6, 25453.	3.3	42
32	memory device. Chemical Research in Chinese Universities, 2016, 32, 76-81.	2.6	4
33	Origin of high data retention for Ge1Cu2Te3 phase-change memory. , 2015, , .		0
34	Origin of high thermal stability of amorphous Ge1Cu2Te3 alloy: A significant Cu-bonding reconfiguration modulated by Te lone-pair electrons for crystallization. Acta Materialia, 2015, 90, 88-93.	7.9	42
35	Role of the nano amorphous interface in the crystallization of Sb2Te3 towards non-volatile phase change memory: insights from first principles. Physical Chemistry Chemical Physics, 2014, 16, 10810.	2.8	24