Yohei Yomogida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6496326/publications.pdf

Version: 2024-02-01

331670 315739 1,551 48 21 38 citations h-index g-index papers 49 49 49 1881 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Tunable room-temperature single-photon emission at telecom wavelengths from sp3 defects in carbon nanotubes. Nature Photonics, 2017, 11, 577-582.	31.4	235
2	Industrial-scale separation of high-purity single-chirality single-wall carbon nanotubes for biological imaging. Nature Communications, 2016, 7, 12056.	12.8	188
3	Experimental determination of excitonic band structures of single-walled carbon nanotubes using circular dichroism spectra. Nature Communications, 2016, 7, 12899.	12.8	104
4	Macroscopic weavable fibers of carbon nanotubes with giant thermoelectric power factor. Nature Communications, 2021, 12, 4931.	12.8	84
5	Ambipolar Organic Singleâ€Crystal Transistors Based on Ion Gels. Advanced Materials, 2012, 24, 4392-4397.	21.0	82
6	Near-Infrared Photoluminescent Carbon Nanotubes for Imaging of Brown Fat. Scientific Reports, 2017, 7, 44760.	3.3	71
7	Electrochromic Carbon Electrodes: Controllable Visible Color Changes in Metallic Singleâ€Wall Carbon Nanotubes. Advanced Materials, 2011, 23, 2811-2814.	21.0	58
8	Intersubband plasmons in the quantum limit in gated and aligned carbon nanotubes. Nature Communications, 2018, 9, 1121.	12.8	52
9	Green light emission from the edges of organic single-crystal transistors. Applied Physics Letters, 2010, 97, 173301.	3.3	51
10	Solving the Thermoelectric Trade-Off Problem with Metallic Carbon Nanotubes. Nano Letters, 2019, 19, 7370-7376.	9.1	50
11	Inkjet printing of single-walled carbon nanotube thin-film transistors patterned by surface modification. Applied Physics Letters, 2011, 99, .	3.3	43
12	Continuous Bandâ€Filling Control and Oneâ€Dimensional Transport in Metallic and Semiconducting Carbon Nanotube Tangled Films. Advanced Functional Materials, 2014, 24, 3305-3311.	14.9	41
13	Groove-Assisted Global Spontaneous Alignment of Carbon Nanotubes in Vacuum Filtration. Nano Letters, 2020, 20, 2332-2338.	9.1	38
14	High-yield and high-throughput single-chirality enantiomer separation of single-wall carbon nanotubes. Carbon, 2018, 132, 1-7.	10.3	34
15	Photoluminescence Quantum Yield of Single-Wall Carbon Nanotubes Corrected for the Photon Reabsorption Effect. Nano Letters, 2020, 20, 410-417.	9.1	33
16	Optically pumped amplified spontaneous emission in an ionic liquid-based polymer light-emitting electrochemical cell. Applied Physics Letters, 2012, 100, 263301.	3.3	32
17	Determination of Enantiomeric Purity of Single-Wall Carbon Nanotubes Using Flavin Mononucleotide. Journal of the American Chemical Society, 2017, 139, 16068-16071.	13.7	31
18	Automatic Sorting of Single-Chirality Single-Wall Carbon Nanotubes Using Hydrophobic Cholates: Implications for Multicolor Near-Infrared Optical Technologies. ACS Applied Nano Materials, 2020, 3, 11289-11297.	5.0	31

#	Article	IF	CITATIONS
19	Extraction of High-Purity Single-Chirality Single-Walled Carbon Nanotubes through Precise pH Control Using Carbon Dioxide Bubbling. Journal of Physical Chemistry C, 2017, 121, 13391-13395.	3.1	27
20	Isotropic Seebeck coefficient of aligned single-wall carbon nanotube films. Applied Physics Letters, 2018, 113, .	3.3	26
21	Photoluminescence Intensity Fluctuations and Temperature-Dependent Decay Dynamics of Individual Carbon Nanotube sp ³ Defects. Journal of Physical Chemistry Letters, 2019, 10, 1423-1430.	4.6	23
22	Control of High-Harmonic Generation by Tuning the Electronic Structure and Carrier Injection. Nano Letters, 2020, 20, 6215-6221.	9.1	20
23	Extraction of the contact resistance from the saturation region of rubrene single-crystal transistors. Applied Physics Letters, 2011, 99, 233301.	3.3	19
24	Thermoelectric properties of WS ₂ nanotube networks. Applied Physics Express, 2017, 10, 015001.	2.4	18
25	Fasting-dependent Vascular Permeability Enhancement in Brown Adipose Tissues Evidenced by Using Carbon Nanotubes as Fluorescent Probes. Scientific Reports, 2018, 8, 14446.	3.3	17
26	Sorting Transition-Metal Dichalcogenide Nanotubes by Centrifugation. ACS Omega, 2018, 3, 8932-8936.	3.5	17
27	Ambipolar transistors based on random networks of WS ₂ nanotubes. Applied Physics Express, 2016, 9, 075001.	2.4	16
28	Origin of the Surfactantâ€Dependent Redox Chemistry of Singleâ€Wall Carbon Nanotubes. ChemNanoMat, 2016, 2, 911-920.	2.8	16
29	Direct observation of cross-polarized excitons in aligned single-chirality single-wall carbon nanotubes. Physical Review B, 2019, 99, .	3.2	15
30	Direct Proof of a Defect-Modulated Gap Transition in Semiconducting Nanotubes. Nano Letters, 2018, 18, 3920-3925.	9.1	13
31	Control of Thermal Conductance across Vertically Stacked Two-Dimensional van der Waals Materials <i>via</i> Interfacial Engineering. ACS Nano, 2021, 15, 15902-15909.	14.6	11
32	Synthesis and ambipolar transistor properties of tungsten diselenide nanotubes. Applied Physics Letters, 2020, 116, .	3.3	10
33	Transistor properties of relatively small-diameter tungsten disulfide nanotubes obtained by sulfurization of solution-synthesized tungsten oxide nanowires. Applied Physics Express, 2019, 12, 085001.	2.4	8
34	Improved synthesis of WS ₂ nanotubes with relatively small diameters by tuning sulfurization timing and reaction temperature. Japanese Journal of Applied Physics, 2021, 60, 100902.	1.5	7
35	Manipulation of local optical properties and structures in molybdenum-disulfide monolayers using electric field-assisted near-field techniques. Scientific Reports, 2017, 7, 46004.	3.3	5
36	Band structure dependent electronic localization in macroscopic films of single-chirality single-wall carbon nanotubes. Carbon, 2021, 183, 774-779.	10.3	5

#	Article	IF	CITATIONS
37	Origin of the background absorption in carbon nanotubes: Phonon-assisted excitonic continuum. Carbon, 2022, 186, 465-474.	10.3	5
38	In situ time-domain thermoreflectance measurements using Au as the transducer during electrolyte gating. Applied Physics Letters, 2020, 117, 133104.	3.3	3
39	One-dimensionality of thermoelectric properties of semiconducting nanomaterials. Physical Review Materials, 2021, 5, .	2.4	3
40	Thermophysical properties of a single-wall carbon nanotube thin film on Au electrodes evaluated by a time-domain thermoreflectance method. Japanese Journal of Applied Physics, 2019, 58, 128006.	1.5	3
41	Synthesis of relatively small-diameter tungsten ditelluride nanowires from solution-grown tungsten oxide nanowires. Japanese Journal of Applied Physics, 2021, 60, SCCD02.	1.5	2
42	Semiconductors: Ambipolar Organic Single-Crystal Transistors Based on Ion Gels (Adv. Mater. 32/2012). Advanced Materials, 2012, 24, 4463-4463.	21.0	1
43	Site-dependence of relationships between photoluminescence and applied electric field in monolayer and bilayer molybdenum disulfide. Japanese Journal of Applied Physics, 2019, 58, 015001.	1.5	1
44	Hall effect in gated single-wall carbon nanotube films. Scientific Reports, 2022, 12, 101.	3.3	1
45	Heat and Charge Carrier Flow through Single-Walled Carbon Nanotube Films in Vertical Electrolyte-Gated Transistors: Implications for Thermoelectric Energy Conversion. ACS Applied Nano Materials, 2022, 5, 6100-6105.	5.0	1
46	Structures and optical properties of thin tungsten oxide nanowires treated with poly(ethylene) Tj ETQq0 0 0 rgB	ST /Overloo	ck 10 Tf 50 38
47	(Invited, Digital Presentation) Atomically Precise Synthesis of One-Dimensional Transition Metal Chalcogenides Using Nano-Test-Tubes. ECS Meeting Abstracts, 2022, MA2022-01, 769-769.	0.0	O
48	(Digital Presentation) Thermoelectric and Electronic Transport Studies of Ultrahigh-Conductivity Aligned Carbon Nanotube Assemblies. ECS Meeting Abstracts, 2022, MA2022-01, 759-759.	0.0	0