
Kirk D Broders

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6496320/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Corn Yield Loss Estimates Due to Diseases in the United States and Ontario, Canada from 2012 to 2015. Plant Health Progress, 2016, 17, 211-222.	1.4	135
2	DNA Sequence-Based Identification of <i>Fusarium</i> : A Work in Progress. Plant Disease, 2022, 106, 1597-1609.	1.4	48
3	Population Structure of Geosmithia morbida, the Causal Agent of Thousand Cankers Disease of Walnut Trees in the United States. PLoS ONE, 2014, 9, e112847.	2.5	38
4	Characterization of Fungal Pathogens Associated with White Pine Needle Damage (WPND) in Northeastern North America. Forests, 2015, 6, 4088-4104.	2.1	33
5	Emergence of white pine needle damage in the northeastern United States is associated with changes in pathogen pressure in response to climate change. Global Change Biology, 2017, 23, 394-405.	9.5	32
6	The new family Septorioideaceae, within the Botryosphaeriales and Septorioides strobi as a new species associated with needle defoliation of Pinus strobus in the United States. Fungal Biology, 2016, 120, 1030-1040.	2.5	28
7	FUSARIUM-ID v.3.0: An Updated, Downloadable Resource for <i>Fusarium</i> Species Identification. Plant Disease, 2022, 106, 1610-1616.	1.4	27
8	Transfer of <i>Xanthomonas campestris</i> pv. <i>arecae</i> and <i>X. campestris</i> pv. <i>musacearum</i> to <i>X. vasicola</i> (Vauterin) as <i>X. vasicola</i> pv. <i>arecae</i> comb. nov. and <i>X. vasicola</i> pv. <i>musacearum</i> comb. nov. and Description of <i>X. vasicola</i> pv. <i>vasculorum</i> pv. nov Phytopathology, 2020, 110, 1153-1160.	2.2	23
9	A Vavilovian approach to discovering crop-associated microbes with potential to enhance plant immunity. Frontiers in Plant Science, 2014, 5, 492.	3.6	22
10	Impact of climate change and race evolution on the epidemiology and ecology of stripe rust in central and eastern USA and Canada. Canadian Journal of Plant Pathology, 2017, 39, 385-392.	1.4	21
11	Phylogenetic Diversity of Rhizoctonia solani Associated with Canola and Wheat in Alberta, Manitoba, and Saskatchewan. Plant Disease, 2014, 98, 1695-1701.	1.4	19
12	Extent and Severity of Caliciopsis Canker in New England, USA: An Emerging Disease of Eastern White Pine (Pinus strobus L.). Forests, 2015, 6, 4360-4373.	2.1	19
13	Comparative Genomics of Pathogenic and Nonpathogenic Beetle-Vectored Fungi in the Genus Geosmithia. Genome Biology and Evolution, 2017, 9, 3312-3327.	2.5	18
14	Response of eastern white pine and associated foliar, blister rust, canker and root rot pathogens to climate change. Forest Ecology and Management, 2018, 423, 18-26.	3.2	18
15	Whole-Genome Comparisons of Ergot Fungi Reveals the Divergence and Evolution of Species within the Genus <i>Claviceps</i> Are the Result of Varying Mechanisms Driving Genome Evolution and Host Range Expansion. Genome Biology and Evolution, 2021, 13, .	2.5	17
16	Genomic Acquisitions in Emerging Populations of <i>Xanthomonas vasicola</i> pv. <i>vasculorum</i> Infecting Corn in the United States and Argentina. Phytopathology, 2020, 110, 1161-1173.	2.2	16
17	<i>Pythium delawarii</i> —a new species isolated from soybean in Ohio. Mycologia, 2009, 101, 232-238.	1.9	15
18	Two new species of <i>Pythium</i> , <i>P. schmitthenneri</i> and <i>P. selbyi</i> pathogens of corn and soybean in Ohio. Mycologia, 2012, 104, 477-487.	1.9	15

KIRK D BRODERS

#	Article	IF	CITATIONS
19	Current Understanding of the History, Global Spread, Ecology, Evolution, and Management of the Corn Bacterial Leaf Streak Pathogen, <i>Xanthomonas vasicola</i> pv. <i>vasculorum</i> . Phytopathology, 2020, 110, 1124-1131.	2.2	15
20	A Scale-Explicit Framework for Conceptualizing the Environmental Impacts of Agricultural Land Use Changes. Sustainability, 2014, 6, 8432-8451.	3.2	14
21	Hostâ€generalist fungal pathogens of seedlings may maintain forest diversity via hostâ€specific impacts and differential susceptibility among tree species. New Phytologist, 2021, 231, 460-474.	7.3	14
22	Four phylogenetic species of ergot from Canada and their characteristics in morphology, alkaloid production, and pathogenicity. Mycologia, 2020, 112, 974-988.	1.9	13
23	Identification of quantitative trait loci associated with maize resistance to bacterial leaf streak. Crop Science, 2020, 60, 226-237.	1.8	13
24	Butternut (<i>Juglans cinerea</i>) health, hybridization, and recruitment in the northeastern United States. Canadian Journal of Forest Research, 2014, 44, 1244-1252.	1.7	12
25	Ergochromes: Heretofore Neglected Side of Ergot Toxicity. Toxins, 2019, 11, 439.	3.4	11
26	Genomics-Informed Molecular Detection of <i>Xanthomonas vasicola</i> pv. <i>vasculorum</i> Strains Causing Severe Bacterial Leaf Streak of Corn. Phytopathology, 2020, 110, 1174-1179.	2.2	11
27	<i>De novo</i> genome assembly of <i>Geosmithia morbida</i> , the causal agent of thousand cankers disease. PeerJ, 2016, 4, e1952.	2.0	9
28	Status of bacterial leaf streak of corn in the United States. , 0, , .		8
29	A large accessory genome and high recombination rates may influence global distribution and broad host range of the fungal plant pathogen Claviceps purpurea. PLoS ONE, 2022, 17, e0263496.	2.5	8
30	Priority of <i>Lophophacidium</i> over <i>Canavirgella</i> : taxonomic status of <i>Lophophacidium dooksii</i> and <i>Canavirgella banfieldii</i> , causal agents of a white pine needle disease. Mycologia, 2015, 107, 745-753.	1.9	7
31	Sympatric divergence of the ergot fungus, <i>Claviceps purpurea</i> , populations infecting agricultural and nonagricultural grasses in North America. Ecology and Evolution, 2021, 11, 273-293.	1.9	7
32	Caliciopsis moriondi, a new species for a fungus long confused with the pine pathogen C. pinea. MycoKeys, 2020, 73, 87-108.	1.9	7
33	Occurrence in Seeds and Potential Seed Transmission of <i>Xanthomonas vasicola</i> pv. <i>vasculorum</i> in Maize in the United States. Phytopathology, 2020, 110, 1139-1146.	2.2	6
34	<i>Phyllachora</i> species infecting maize and other grass species in the Americas represents a complex of closely related species. Ecology and Evolution, 2022, 12, e8832.	1.9	6
35	Mining Indole Alkaloid Synthesis Gene Clusters from Genomes of 53 Claviceps Strains Revealed Redundant Gene Copies and an Approximate Evolutionary Hourglass Model. Toxins, 2021, 13, 799.	3.4	4
36	Brome grasses represent the primary source of <i>Claviceps purpurea</i> inoculum associated with barley fields in the San Luis Valley of Colorado. Canadian Journal of Plant Pathology, 2023, 45, 15-29.	1.4	3

#	Article	IF	CITATIONS
37	Building More Resilient Culture Collections: A Call for Increased Deposits of Plant-Associated Bacteria. Microorganisms, 2022, 10, 741.	3.6	2
38	Genomeâ€wide SNP identification in <i>Fraxinus</i> linking genetic characteristics to tolerance of <i>Agrilus planipennis</i> . Ecology and Evolution, 2021, 11, 14775-14788.	1.9	0
39	Hyperspectral Evaluation of <i>Venturia inaequalis</i> Management Using the Disease Predictive Model RIMpro in the Northeastern U.S Agricultural Sciences, 2017, 08, 1358-1371.	0.3	0